Из мировой истории цифровой вычислительной техники
Категория реферата: Рефераты по истории техники
Теги реферата: темы докладов по обж, решебник по геометрии
Добавил(а) на сайт: Pushkin.
1 2 3 4 | Следующая страница реферата
Из мировой истории цифровой вычислительной техники
Б.Н.Малиновский.
В настоящее время информатика и ее практические результаты, становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что наступающий XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т.д.
Последние десятилетия уходящего века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области.
История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.
В дневниках гениального итальянца Леонардо да Винчи (1452 - 1519), уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13- разрядные десятичные числа. Специалисты известной американской фирмы IBM воспроизвели машину в металле и убедились в полной состоятельности идеи ученого. Его суммирующую машину можно считать изначальной вехой в истории цифровой вычислительной техники. Это был первый цифровой сумматор, своеобразный зародыш будущего электронного сумматора - важнейшего элемента современных ЭВМ, пока еще механический, очень примитивный ( с ручным управлением). В те далекие от нас годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений.
Однако потребность в этом была настолько малой (а точнее, ее не было совсем!), что лишь через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец - немецкий ученый Вильгельм Шиккард (1592-1636), не читавший, естественно, дневников великого итальянца, который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной, в основном, с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме, на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает как она устроена. К сожалению, данных о дальнейшей судьбе машины история не сохранила. По-видимому, ранняя смерть от чумы, охватившей Европу, помешала ученому выполнить его замысел.
Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.
В XYII веке положение меняется. В 1641 - 1642 гг. девятнадцатилетний Блез Паскаль (1623 - 1662), тогда еще мало кому известный французский ученый, создает действующую суммирующую машину ("паскалину"). В начале он сооружал ее с одной единственной целью - помочь отцу в расчетах, выполняемых при сборе налогов. В последующие четыре года им были созданы более совершенные образцы машины. Они были шести и восьми разрядными, строились на основе зубчатых колес, могли производить суммирование и вычитание десятичных чисел. Было создано примерно 50 образцов машин, Б. Паскаль получил королевскую привилегию на их производство, но практического применения "паскалины" не получили, хотя о них много говорилось и писалось (в основном, во Франции).
В 1673 г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646 - 1716), создает счетную машину ( арифметический прибор, по словам Лейбница) для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, позволяющий осуществлять умножение и деление. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", - писал В. Лейбниц одному из своих друзей. О машине Лейбница было известно в большинстве стран Европы.
В цифровых электронных вычислительных машинах (ЭВМ), появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и "арифметический прибор" Лейбница), получило название арифметического. Позднее, по мере добавления ряда логических действий, его стали называть арифметико-логическим. Оно стало основным устройством современных компьютеров.
Таким образом, два гения XVII века, установили первые вехи в истории развития цифровой вычислительной техники.
Заслуги В. Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем, основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В. Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления.
В 1799 г. во Франции Жозеф Мари Жакар ( 1752 - 1834) изобрел ткацкий станок, в котором для задания узора на ткани использовались перфокарты. Необходимые для этого исходные данные записывались в виде пробивок в соответствующих местах перфокарты. Так появилось первое примитивное устройство для запоминания и ввода программной (управляющей ткацким процессом в данном случае) информации.
В 1795 г. там же математик Гаспар Прони (1755 - 1839), которому французское правительство поручило выполнение работ, связанных с переходом на метрическую систему мер, впервые в мире разработал технологическую схему вычислений, предполагающую разделение труда математиков на три составляющие. Первая группа из нескольких высококвалифицированных математиков определяла (или разрабатывала) методы численных вычислений, необходимые для решения задачи, позволяющие свести вычисления к арифметическим операциям - сложить, вычесть, умножить, разделить. Задание последовательности арифметических действий и определение исходных данных, необходимых при их выполнении ("программирование") осуществляла вторая, несколько более расширенная по составу, группа математиков. Для выполнения составленной "программы", состоящей из последовательности арифметических действий, не было необходимости привлекать специалистов высокой квалификации. Эта, наиболее трудоемкая часть работы, поручалась третьей и самой многочисленной группе вычислителей. Такое разделение труда позволило существенно ускорить получение результатов и повысить их надежность. Но главное состояло в том, что этим был дан импульс дальнейшему процессу автоматизации, самой трудоемкой (но и самой простой!) третьей части вычислений - переходу к созданию цифровых вычислительных устройств с программным управлением последовательностью арифметических операций.
Этот завершающий шаг в эволюции цифровых вычислительных устройств (механического типа) сделал английский ученый Чарльз Беббидж (1791 - 1871). Блестящий математик, великолепно владеющий численными методами вычислений, уже имеющий опыт в создании технических средств для облегчения вычислительного процесса (разностная машина Беббиджа для табулирования полиномов, 1812 - 1822гг.), он сразу увидел в технологии вычислений, предложенной Г. Прони, возможность дальнейшего развития своих работ. Аналитическая машина ( так назвал ее Беббидж), проект которой он разработал в 1836 - 1848 годах, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ пять основных устройств: арифметическое, памяти, управления, ввода, вывода.
Для арифметического устройства Ч. Беббидж использовал зубчатые колеса, подобные тем, что использовались ранее. На них же Ч. Беббидж намеревался построить устройство памяти из 1000 пятидесятиразрядных регистров ( по 50 колес в каждом!). Программа выполнения вычислений записывалась на перфокартах (пробивками), на них же записывались исходные данные и результаты вычислений. В число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Автоматическое выполнение программы вычислений обеспечивалось устройством управления. Время сложения двух пятидесятиразрядных десятичных чисел составляло, по расчетам ученого, 1 сек, умножения - 1 мин.
Механический принцип построения устройств, использование десятичной системы счисления, затрудняющей создание простой элементной базы, не позволили Ч. Беббиджу полностью реализовать свой далеко идущий замысел, пришлось ограничиться скромными макетами. Иначе, по размерам машина сравнялась бы с локомотивом, и чтобы привести в движение ее устройства понадобился бы паровой двигатель.
Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815 - 1852), поразительно схожи с программами, составленными, впоследствии, для первых ЭВМ. Не случайно замечательную женщину назвали первым программистом мира.
Еще более изумляют ее высказывания по поводу возможностей машины:
"... Нет конца демаркационной линии, ограничивающей возможности аналитической машины. Фактически аналитическую машину можно рассматривать как материальное и механическое выражение анализа".
Несмотря на все старания Ч. Беббиджа и А. Лавлейс машину построить не удалось... Современники, не видя конкретного результата, разочаровались в работе ученого. Он опередил свое время. И сам понимал это: "Вероятно пройдет половина столетия, прежде чем кто-нибудь возмется за такую малообещающую задачу без тех указаний, которые я оставил после себя. И если некто, не предостереженный моим примером, возьмет на себя эту задачу и достигнет цели в реальном конструировании машины, воплощающей в себя всю исполнительную часть математического анализа с помощью простых механических или других средств, я не побоюсь поплатиться своей репутацией в его пользу, т.к. только он один полностью сможет понять характер моих усилий и ценность их результатов". После смерти Ч. Беббиджа Комитет Британской научной ассоциации, куда входили крупные ученые, рассмотрел вопрос, что делать с неоконченной аналитической машиной и для чего она может быть рекомендована.
К чести Комитета было сказано: "...Возможности аналитической машины простираются так далеко, что их можно сравнить только с пределами человеческих возможностей... Успешная реализация машины может означать эпоху в истории вычислений, равную введению логарифмов".
Непонятым оказался еще один выдающийся англичанин, живший в те же годы, - Джордж Буль (1815 - 1864). Разработанная им алгебра логики (алгебра Буля) нашла применение лишь в следующем веке, когда понадобился математический аппарат для проектирования схем ЭВМ, использующих двоичную систему счисления. "Соединил" математическую логику с двоичной системой счисления и электрическими цепями американский ученый Клод Шенон в своей знаменитой диссертации (1936г.).
Через 63 года после смерти Ч. Беббиджа (он почти угадал срок!) нашелся "некто" взявший на себя задачу создать машину, подобную - по принципу действия, той, которой отдал жизнь Ч. Беббидж. Им оказался ... немецкий студент Конрад Цузе (1910 - 1985). Работу по созданию машины он начал в 1934г., за год до получения инженерного диплома. Конрад (друзья его звали Куно) ничего не знал ни о машине Беббиджа, ни о работах Лейбница, ни о алгебре Буля, которая словно создана для того, чтобы проектировать схемы с использованием элементов, имеющих лишь два устойчивых состояния.
Тем не менее, он оказался достойным наследником В. Лейбница и Дж. Буля поскольку вернул к жизни уже забытую двоичную систему исчисления, а при расчете схем использовал нечто подобное булевой алгебре. В 1937г. машина Z1 (что означало Цузе 1) была готова и заработала!
Рекомендуем скачать другие рефераты по теме: контрольные 2 класс, скачать изложение.
1 2 3 4 | Следующая страница реферата