Телефонная связь и ее развитие
Категория реферата: Рефераты по истории техники
Теги реферата: культурология как наука, сочинение татьяна
Добавил(а) на сайт: Илья.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Ступени емкости коммутационного поля SN:504LTG, SN:252LTG и SN:126LTG, применяемые в станциях большой и очень большой емкости имеют следующую структуру:
- одна ступень временной коммутации, входящая (TSI),
- три ступени пространственной коммутации (SSM),
- одна ступень временной коммутации, исходящая (TSO).
Ступени емкости коммутационного поля SN:63LTG в станциях средней емкости имеют следующую структуру:
- одна ступень временной коммутации, входящая (TSI),
- одна ступень пространственной коммутации (SSM),
- одна ступень временной коммутации, исходящая (TSO).
Эти ступени временной и пространственной коммутации (функциональные блоки) размещаются в модулях. Соединительный путь коммутационного поля с 504, 252 или с 126 LTG состоит из следующих типов модулей:
- модуль интерфейса между TSM и LTG (LIL);
- модуль ступени временной коммутации (TSM);
- модуль интерфейса между TSG и SSG (LIS);
- модуль ступени пространственной коммутации 8/15 (SSM8/15);
- модуль ступени пространственной коммутации 16/16 (SSM16/16).
При установлении соединения посредством SN:63LTG модули SSM8/15 не используются.
Приемные части LIL и LIS компенсируют разницу времени распространения через подключенные уплотненные линии. Таким образом, они осуществляют фазовую синхронизацию входящей информации в уплотненных линиях. Причина возникновения разницы во времени распространения заключается в том, что станционные стативы устанавливаются на различных расстояниях друг от друга.
Количество TSM в коммутационном поле всегда равняется количеству LIL. Каждый модуль TSM состоит из одной входящей ступени временной коммутации (TSI) и одной исходящей ступени временной коммутации (TSO). TSI и TSO обрабатывают входящую или исходящую информацию в коммутационном поле. Посредством ступеней временной коммутации октеты могут изменять временной интервал и уплотненную линию между входом и выходом. Октеты на четырех входящих уплотненных линиях циклически записываются в память речевых сигналов ступени TSI или TSO (4X128=512 различных временных интервалов). Для записи октетов поочередно используются области памяти речевых сигналов 0 и 1 с периодичностью 125 мкс. В процессе считывания последовательность октетов определяется устанавливаемыми соединениями. Хранимые октеты считываются в любой из 512 временных интервалов и затем передаются по четырем исходящим уплотненным линиям.
Модуль SSM8/15 состоит из двух ступеней пространственной коммутации: одна ступень пространственной коммутации 8115 используется для направления передачи LIS SSM8/15 SSM16/16, а вторая ступень пространственной коммутации 15/8 - для направления передачи SSM16/16 SSM8/15 LIS.
Посредством ступени пространственной коммутации октеты могут менять уплотненные линии между входом и выходом, но при этом сохраняются в одном и том же временном интервале. Ступени пространственной коммутации 16/16, 8/15 и 15/8 коммутируют принятые октеты синхронно с временными интервалами и периодами 125 мкс. Коммутируемые соединения изменяются в последовательных временных интервалах. При этом октеты, поступающие по входящим уплотненным линиям распределяются “в пространстве” к исходящим уплотненным линиям.
В ступени со структурой TST модуль SSM16/16 коммутирует октеты, принятые со ступеней TSI, непосредственно со ступенями TSO.
Каждая TSG, SSG и при SN:63LTG каждая сторона коммутационного поля имеют собственное управляющее устройство, каждое из которых состоит из двух модулей:
- управляющего устройства коммутационной группы (SGC);
- модуля интерфейса между SGC и блоком буфера сообщений MBU. SGC(LIM).
Благодаря высоким скорости и качеству передачи данных коммутационное поле способно проключать соединения для различных видов служб связи (например, для телефонии, телетекса и передачи данных).
Координация.
Наряду с координационным процессором (CP) имеются другие устройства микропрограммного управления, распределенные в системе:
- групповой процессор (GP) в линейной группе (LTG);
- управляющее устройство цифрового абонентского блока (DLUC);
- процессор сети сигнализации по общему каналу (CCNP);
- управляющее устройство коммутационной группы (SGC)
- управляющее устройство буфера сообщений (MBC);
- управляющее устройство системной панели (SYPC).
Координационный процессор 113 (CP113 или CP113C) представляет собой мультипроцессор, емкость которого наращивается ступенями, благодаря чему он может обеспечить станции любой емкости соответствующей производительностью. Его максимальная производительность по обработке вызовов составляет свыше 2 700 000 BHCA.
В CP113C (рис 2.8) два или несколько идентичных процессоров работают параллельно с разделением нагрузки. Главными функциональными блоками мультипроцессора являются:
- основной процессор (BAP) для эксплуатации и технического обслуживания, а также обработки вызовов;
- процессор обработки вызовов (CAP), предназначенный только для обработки вызовов;
- общее запоминающее устройство (CMY);
- контроллер ввода / вывода (IOC);
- процессоры ввода / вывода (IOP).
К CP подключаются:
- Буфер сообщений (MB) для координации внутреннего обмена информацией между CP, SN, LTG и CCNC в пределах одной станции.
- Центральный генератор тактовой частоты (CCG) для обеспечения синхронизации станции (и при необходимости сети).
- Системная панель (SYP) для индикации внутренней аварийной сигнализации, сообщений - рекомендаций и нагрузки CP, Таким образом, SYP обеспечивает текущую информацию о рабочем состоянии системы. На панель также выводится внешняя аварийная сигнализация, например, пожар, выход из строя системы кондиционирования воздуха и прочее.
Для организации контроля за всеми станциями одной зоны обслуживания в центре эксплуатации и техобслуживания (OMC) может устанавливаться центральная системная панель (CSYP). На панель CSYP выводятся как акустические, так и визуальные аварийные сигналы и сообщения - рекомендации, поступающие со всех станций.
- Терминал эксплуатации и техобслуживания (OMT).
- Внешняя память (EM) для хранения, например:
программ и данных, которые не должны постоянно храниться в CP;
вся система прикладных программ для автоматического восстановления;
Рекомендуем скачать другие рефераты по теме: греция реферат, картинки реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата