Машины, которые говорят и слушают
Категория реферата: Рефераты по кибернетике
Теги реферата: мировая торговля, эффективность реферат
Добавил(а) на сайт: Чупров.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Одна из самых интересных систем автоматического распознавания слитной речи - система harfy, разработанная по проекту arpa (США, Питсбург). Эта система по сравнению с другими разработками, проводившимися по этому проекту [l5lj,наиболее близка к практическому использованию. Словарь harpy составляет ЮН словоформ - слов телефонной информацион-
34
но-справочной службы о новостях. При испытаниях harpy была получена
точность распознавания фраз, равная 95% на обучающей выборке и 92^ на
контрольной. Система воспринимает слитную речь, не содержащую
стилистических ошибок. В harpy информация о языке представлена фонетическим
графом - интегральной сетью переходов с конечным числом состояний, не
учитывающей априорные вероятности переходов. Распознавание
осуществляется сравнением входной реализации, представленной маркированными
сегментами, с этой сетью.
Система содержит несколько эвристических процедур для улучшения ее характеристик: выделение подсетей и сжатие их для уменьшения общего объема сети, автоматическое составление описания коартикуляционных явлений на стыках слов и т.д. Время распознавания системы в период испытания составляло 2D с на 1 с речи (есть сведения, что в настоящее время оно снижено до Зс на I с речи).
Синтаксические значения в hahpy однозначно определяются независимым от контекста рядом выработанных правил, формализующих проолемно- ориентированный язык. Лексические знания представлены словарем, который содержит символическую фонемную транскрипцию всех альтернативных произнесений. Правила стыков, как и в системах IBM, учитывают фонетические явления при соединении слов в слитно произносимое словосочетание. В качестве первичных параметров используются коэффициенты автокорреляции и линейного предсказания. У системе Нлару в процессе работы осуществляется адаптивная подстройка под диктора с помощью десяти обобщенных эталонов, характеризующих усредненный вокальный тракт группы дикторов. На базе harp? был разработан голосовой ввод в картографическую систему ( vigs), позволяющий дублировать клавиатуру при вводе картографической информации [l3l].B настоящее время система harpy переводится на мультимикропроцессорную базу [36]. перейдем к краткому описанию систем "понимания" речи. Их разработка началась после появления отчета [161] , в котором известные американские специалисты в области искусственного интеллекта, распознавания речи, системного программирования, математической лингвистики изложили взгляды на проблему построения систем, воспринимающих слитную речь, произносимую на естественном языке. Основные положения отчета [161] легли в основу пятилетней программы arpa.
Достаточно подробные обзоры по начальному этапу работ над системами
понимания речи содержатся в [79,85] . Поэтому здесь рассмотрим лишь итоги
проекта arpa в области построения
35
конкретных СПР. Можно считать законченными (в большей или меньшей степени)
системы понимания речи трех американских организаций -ОЫП, 3RI и ввн [179,
162, 187, 189].
Основные усилия c:,?J были направлены на построение системы понимания
речи Неагаау-1 "^основанной на принципе: "Выдвижение гипотезы и ее
подтверждение различными независимыми источниками знаний о языке".
Отдельные элементы этой системы подробно освещены в [79, 85, 8b, I2U,
179].
Система Псагвву-п была испытана на IOU предложениях, составленных из
IUH словоформ, аналогичных словарю системы harpy, описанной ранее (система
HARPY имела грамматику с гораздо более простым синтаксисом). Ошибки при
распознавании фраз в Неагаау-п составляди 16%, а время распознавания
превышало время распознавания системы harfx в 2 - 33 раз.
В фирме вен на I этапе разрабатывалась система понимания речи
Speeohlis, в качестве языка которой использовался упрощенный вариант языка ИПС lunar; система Ь^-паг давала возможность анализировать образцы лунных пород[?9,Уб1В дальнейшем была усовершенствована этой же фирмой новая система понимания речи нули (Hear what I mean ) С учетом недостатков
Speechlia.
.Язык системь. hwim относится ^ области бухгалтерских расчетов. Вместо раздельных синтаксического и семантического блоков системы Speechlis , нздш имеет единый, семантико-синтакси-ческий модуль, реализующий так называемый блок "прагматической грамматики". Эта грамматика представлена здесь в виде сети и основывается не на таких синтаксических категориях, как подлежащее, сказуемое, определение,а на семантических - "поездка","ли ад", "расстояние". Словарь itvim включает 1100 словоформ [185, I8yJ
Прагматическая грамматика, хотя и жестко связана с проблемно-
ориентированным языком, очень удобна длк обеспеченля простых принципов
использования синтаксических, семантических и прагматических ограничений
языка, которые необходимо делать для повышения точности интерпретации
высказывания. По-видимому,на перво» этапе построения автоматических систем
понимания речи целесообразно так и поступать, т.е. разделить задачи
использования словарями (например, при автоматическом машинном переводе
текстов) и использованием синтаксиса и семантики для построения СПР. dc
ьтором случае задача несколько иная - и более сложная, и боле( простая.
С одной стороны, нет уверенности в правильном распоэ навании всех
составляющих высказывания; неясно, существуют я'
36 вообще пробелы (паузы, междометия и т.д.) на временной оси,где искать ключевые слова и пр. Но с другой стороны, мы ограничиваемся достаточно простым проблемно-ориентированным языком с относительно небольшим словарем и упрощенными грамматическими конструкциями.
В системе нто,1 акустическая информация используется блоками акустико- фонетического распознавания ( apr) и периметри-чеокой верификации слов (
?та ). Результатом работы APR является фонетическая транскрипция "снизу- вверх".
Блок pvw осуществляет верификацию "сверху-вниз", води словесная гипотеза поддерживается акустическим уровнем. Основной программный модуль верификатора - программа синтеза слов по правилам.
Отдичие системы h.'.'im от Speechlia заключается также и в характере акустико-фонетического распознавания - в наличии у системы HWIM блока селективной модификации ( зМ), дающего возможность реализовать двухступенчатую сегментацию и маркировку. Программа SM на выходе порождает решетку сегментов, представляющую возможные альтернативы фонам.
Каждый из сегментов первоначально маркируется одной меткой. Затем в зависимости от этой предварительной классификации вычисляются некоторые величины аку-отичаских параметров и модифицируются оценки данных фонем.
Функции пяотности вероятностей, используемые блоком сеяективной модификации sM, поступают в бяок агер ( Acoustic Rionetic Experiments
Facility ), который содержит модули, позволяющие моделировать звуки речи и проверять параметрические многомерные распределения вероятностей для ряда фонетических классов, что дает возможность полнее использовать многие независимые параметры одновременно.
Программа ан? выделяет не только грубые классы фонем, но и производит идентификацию внутри классов. Характеристики фонам в слитной речи сильно зависят от контекста, т.е. наблюдается наличие нескольких аллофонов, для которых оценки сильно перекрываются. Поэтому в hv/im для каждого класса фонем устанавливается ряд фонетических признаков и используется таблица, в которой показано ранжирование этих признаков для аллофонов каждого класса.
После сегментации высказывания и построения сегментной решетки, перекрывающей высказывайте отрезками, соответствующими фонемам, блок
управления вызывает процедуру лексического поиска для сканирования вдоль
всей сегментной решетки и поиска Ib наиболее подходящих слов. Из-за
большой неопределенности на стыках
37
слов эту процедуру проделывают слева направо и справа налево. Сяова, отобранные процедурой лексического поиска, образуют словесную решетку, где они используются при последующей обработке. Блок управления, выбрав
из УО отобранных при сканировании слов одно с наибольшим весом
(получившее наибольшую оценку).пытается, основываясь на прагматической
грамматике, строить гипотезу о большем отрезке сигнала. Если расширение
гипотезы не получается, блок управления берет следующее (по вес^) слово
словесной решетки; если это слово подходит, то расширяют двухсловную
гипотезу, если же нет, то подбирают новое ключевое слово.так продолжают
до тех пор, пока не будет построена гипотеза обо всем высказывании.
Если система не в состоянии сформировать правильную гипотезу о фразе или если исчерпаны ресурсы, то считается,что система не смогла интерпретировать высказывание. При расширении гипотезы блок управления вызывает синтаксическую компоненту, которая дает возможность оценить гипотезу и предсказать новые слова. Синтаксическая компонента помечает каждое слово словесной решетки, которое можно использовать для расширения гипотезь', и устанавливает, какие еще слова требуются для подтверждения этой гипотезы ("подсказка" сверху). В связи с последним могут быть произведены дополнительные сравнения с эталонами для проверки, нет ли в текущей реализации высказывания необходимых слов.
После того, как синтаксическая компонента ("прагматическая грамматика") сделала свои предположения слов слева направо, она вызывает процедуру лексического поиска для проверки новых гипотез о словах. Оценки слов, оценки гипотез об отрезках фразы и оценки фраз ("событий", как их называют разработчики Wi'iu ) влияют на общую стратегию интерпретации высказывания. Событиям присваиваются очки, приблизительно равные сумме очков слов подтвержденной гипотезы и слов, требуемых для расширения этой гипотезы,
Попробуем рассмотреть пример, из которого станет ясно, как
работает механизм анализа предположения, основанный на так называемой
"островковой стратегии". Пусть на вход системы поступила фраза:
"What Is the total budget figure ?"(Какова общая сумма бюджета?). При
просмотре фразы справа налево процедура лексического поиска формирует
таблицу:
17 17
24
22 11
182
178 174
-38
-10
-R
-d
-R
1. FIGURE
2. FIGURE
3. TOTAL
38
4. FIGURE1723169-535. YEAR2023107-23б. УСУ2022100-317. IS3596-318.
ABOVE10149409. BUDGET111781-1610. IT6880-1611. IS2576-3112, ТО7973-4613^
WOULD0372-3114. -34572015, FIGURE172169-38Слева направо16. TOTAL -
ED71?1971017. FIGURE1724182018. WHAT03178019. PIOURE1722178-3820.
TOTAL711174-1021, FIGURE1723169-5322. HJDGET1117154-1623. VKAH2023107-2324.
YOU2022100-3125. IS3596-3126. FIGURE - ED172389-3827. FIGURE172883028.
BUDGET111781-1629. IT6880-1630. HIS2576-31
Список представляет 30 возможных слов при сканировании справа и слева, позиции правой и левой конечных сегментов слова, очков, которые получило данное слово при сравнении эталонов с участками входной реализации на местах между начальной и конечной точками гипотезируемого слова, логарифма вероятности произнесения данного слова. Список может описывать некие специфические свойства, связанные с произношением (здесь всюду пропуски - -), а также показывать, справа или слева производилось сравнение с эталоном (здесь показатели R и L).
Анализ списка гипотезируемых слов показывает, что больше всего очков набрало слово totaled (при сканировании слева направо). Бто слово занимает в словесной решетке позицию от сегмента 7 до сегмента 12 и имеет вес 197. Для этого слова соа-
39
дается однословная гипотеза, которую должна расширить синтаксическая
процедура. Но прагматическая грамматика не позволяет формировать
фразу с этим словом в прошедшем времени. Следовательно, никакого
предсказания о возможном контексте с этим словом сделано Сыть не может.
Следует перейти к следующему (по оцен. не в очках) слову figure .
Отметим, что существует семь различных сравнений с этим словом
примерно в гом же месте высказывания, немного отличающихся очками.(Это
объясняется различными фонологическими эффектами на концах слова, возможностями различной сегментации в сегментной решетке и различными
возможными произнесениями этого слова, отраженными в эталонном фонетическом
графе; в кашем случае все связано с неопределенностями сегментации этого
слова в конце.) Вообще говоря, то, что одно слово встречается в списке
вероятных кандидатов несколько раз, является хорошим признаком того, что это слово действительно присутствует в высказывании,
Чтобы избежать избыточной обработки, авторы вводят понятие "нечеткого словесного сравнения", которое обобщает сравнение с эталоном одного и того же слова, появившегося примерно в том же месте. Всегда, когда слово- кандидат подобно figure встречалось несколько раз, при расширении гипотезы используются нечеткие границы. Итак, для слова figure предлагается расширить гипотезу.
При обработке предложенного слова (с примерно известными
границами) процедура Syntax подбирает слово виос-зт, заканчивающееся
позицией 17. В прагматической грамматике hwim слово budget может
использоваться лишь в словосочетании budget figure и, так как это
словосочетание находится в конце предложения, никаких слов справа больше
не будет. Блок управления использует далее найденное словосочетание в
качестве расширенного "островка надежности" для поиска слов от позиции
II до начала высказывания.
Обращаясь к синтаксической процедуре, блок управления обнаруживает, что прагматическая грамматика допускает еще несколько слов, кроме слов из списка, рассмотренного ранее, для расширения этой гипотезы. 9то связано с тем, что служебные слова,которые могут стоять перед словосочетанием budget. figure , имеют слишком небольшой вес (очки). В результате сравнения сегментов, расположенных слева от слова budget , и эталонов слов, допускаемых прагматической грамматикой, получают новый список, расширяющий предыдущий (в списке остаются лишь слова, оценки которых превышают вктоочающий модель пользова-теяя и семантическую память.
Эксперименты с vdms показали, что речевой сигнал ограничивается по полосе на частоте 9 кГц и поступает на 12-разрядный аналого-цифровой преобразователь, где квантуется с частотой 30 кГц. Затеи оцифрованная речь проходит через ЦАП и результирую щая аналоговая речь поступает на три полосовых фильтра, имеющих полосы пропускания I&0 - 190, 990 - 2200 и
8000 - 5000 Гц. Через интервалы в 10 мс с фильтров снимались два параметра - максимальная амплитуда и число нулевых пересечений.
Полученные шесть параметров использовались для грубой акустической маркировки каждого десятимиллисекувдного отрезка.
Как только слово поступает в систему, формируется и хранится в памяти информахцж о нем, в частности, отмечается, сколько высказываний тому назад это слово было произнесено и былс ли оно использовано, насколько вероятно, что это слово повторится еще раз. В системе учтено, что различные контекстные слова предсказанные тематической памятью, "стареют" от высказывания ч высказывании и вероятности их использования уменьшаются. Вел* вероятность предсказанного слова Падает ниже заданного нaпepe^ порога, то это слово какое-то время не рассматривается.Все эт' в vdms выполняет блок диалогового уровня Discourse , являющийся наиболее оригинальным блоком системы. Процедуры, которые
42
реализует Discourse, основаны на изучении,диаюга между двумя людьми, совместно выполняющими некоторую работу. Ьыло найдено и Досмаяизовано
влияние контекста на характер диалога,причем рассматриваются два вида
контекстного влияния. Глобальный контекст обеспечивает один вид ограничений
при интерпретации высказывания. Эти ограничения используются при
идентификации группы существительных. Второй вид ограничений связан с
текущим контекстом соседних высказываний. Они используются при
интерпретации сокращенных, эллиптических выражений и, в частности, добавляют дополнительные фрагменты к сокращенному высказыванию. В качестве
примера высказывания, которое может воспринять система VDl'iS , ыож" но
привести такое: "Напечатайте типы подводных лодок, на которых больше семи
ракет".
СПР vdms - spi построена на базе проблемно-ориентированного
языка,доступного информационно-поисковой системе данных о подводном флоте
США, Великобритании и СССР. Общий словарь системы составляет 450 слов [
182] , Система использует синтаксис спонтанного английского диалога, что
позволяет запоминать информацию о ранее произнесенных фразах и декодировать
текущие, используя предыдущие высказывания. Система vdms-sri наиболее
полно использует идеологию искусственного интеллекта при интерпретации
устных высказываний, которые могут быть сильно "усеченными".
Рекомендуем скачать другие рефераты по теме: ответы 9 класс, процесс реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата