Применение физики в криминалистических исследованиях
Категория реферата: Рефераты по криминалистике
Теги реферата: растения реферат, решебник 6 класс
Добавил(а) на сайт: Njuhtilin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Находясь в возбужденном состоянии, атомы излучают свет разной длины
волны. Для выделения характеристического излучения используют разные
оптические приспособления, основанные на преломлении и фокусировке света.
Если свет, выходя из узкой щели, встречает на пути стеклянную призму (углы
призмы специально подбираются), то световой поток делится на отдельные
компоненты, которые затем проектируются на экране в виде нескольких цветных
линий (рис.8). В последнее время появились новые оптические устройства, основанные на совместном применении явлений дифракции и интерференции.
Аналогичные результаты дает и использование оптических решеток с набором
щелей (рис.9).
Разложенный свет содержит собственные окрашенные возбужденные компоненты
– фон спектра, на котором четко выделяются более яркие линии возбужденных
атомов анализируемого вещества.
При появлении метода атомно–эмиссионного анализа дифракционную картину регистрировали на фотопластинке. Этот способ регистрации спектров широко используется и в настоящее время. Спектр на проявленной фотопластинке представляет собой набор различных по интенсивности довольно четких темных линий (полос). Для того чтобы определить состав образца, необходимо полосы на спектре идентифицировать (отнести по длинам волн). Подобную задачу можно решить, совместив изображения на фотопластинке со шкалой длин волн, но на практике лучше всего зарекомендовал себя иной метод. На верхней или нижней части той самой фотопластинки, на которой записывают спектр анализируемой пробы, предварительно отпечатывают спектр металлического железа. Спектр железа содержит множество линий, и, зная их точное положение, можно легко провести градуировку полос в спектре объекта неизвестного состава. Фирмы, выпускающие детектирующие устройства к атомно–эмиссионным спектрометрам, поставляют фотопластинки с нанесенным на них спектром железа, где обозначены также положения характеристических линий некоторых других элементов. После необходимой обработки спектр с фотопластинки проецируется на небольшой экран и путем сравнения положений линий в спектрах железа и анализируемого образца проводится отнесение неизвестных линий.
В последнее время для регистрации излучения применяются уже электронные устройства в комбинации с ЭВМ. Внедрение компьютеров позволяет использовать для идентификации вещества не только несколько отдельных характеристических линий, а весь спектр, разрешенный с точностью до нанометра.
3.2.1.2. Атомно-абсорбционная спектрометрия
Еще один метод спектрального анализа – атомно-абсорбционная спектрометрия – представляет собой очень распространенный метод элементного анализа. Метод основан на измерении разности энергетических уровней валентных электронов, то есть по существу на тех же самых физических принципах, что и атомно-эмиссионная спектрометрия, но в атомной абсорбции используется не излучение, а поглощение световых квантов. В зависимости от своей природы атомы поглощают кванты определенной энергии причем, чем большую энергию поглощают электроны, тем на более отдаленные от ядра орбиты они попадают. Итак, если анализируемая проба переведена в атомарное состояние, то при прохождении света определенной длины волны поток квантов на выходе должен ослабеть. Положение полосы поглощения в спектре зависит от природы определяемых атомов, а уменьшение интенсивности поглощения – от количества этих атомов.
В методе атомно-абсорбционной спектрометрии пробу надо предварительно испарить, а сухой остаток атомизировать. Естественно, что проще всего атомизация протекает при тепловом воздействии. Правда, температура в атомизаторах ниже, чем в источниках возбуждения атомно-эмиссионных спектрометров, что недостаточно для того, чтобы возбудить атомы. Этой цели служит внешний источник излучения. При сравнительно мягких температурных режимах атомизатора многие вещества не переходят в парообразное состояние и их приходится вначале превращать в такие химические соединения, которые легко поддаются атомизации. Чаще всего их предварительно растворяют и для анализа используют водные растворы.
В атомно-абсорбционной спектрометрии используется пламенная и непламенная атомизация. В первом случае раствор вводят в пламя, во втором – пробы наносят на графитовые стержни, находящиеся внутри маленькой печи и нагревают. При пламенной атомизации продукты сгорания легко воспламеняемых смесей поднимаются в верхнюю часть языка пламени, то есть атомы определяемого элемента быстро выносятся на воздух. При использовании графитовых атомизаторов атомы поступают в почти закрытую камеру и находятся там довольно долго. Понятно, что именно второй способ атомизации позволяет анализировать очень малые пробы, поэтому он и нашел наиболее широкое применение в криминалистических лабораториях.
Графитовый атомизатор освещается от внешнего источника световым потоком, направленным вдоль главной оси атомизатора. При прохождении пробы
интенсивность светового потока уменьшается, так как атомы определяемого
элемента поглощают свет определенной длины волны. Измерить уменьшение
интенсивности при использовании белого света довольно сложно, потому что
трудно точно оценить потемнение отдельной линии на общем светлом фоне.
Однако можно пойти по другому пути и предварительно разложить белый цвет на
отдельные компоненты, пропуская его, например через призму. После этого на
образец можно направить только ту часть спектра, которая излучает линию, характерную для поглощения атомов определяемого элемента. Тем самым мы
устраняем сразу два недостатка использования белого цвета. Во–первых, уменьшается время нахождения в атомизаторе испаренной пробы и тем самым
снижается вероятность потери пробы при диффузии через концы трубки. Во–
вторых, отпадает необходимость прибегать к высокоинтенсивным лампам, способным донести ослабленный абсорбцией сигнал до фотоприемника.
Поиск источника освещения увенчался замечательным открытием: свет должен
исходить от возбужденных атомов того самого элемента, который нужно
обнаружить в пробе. Простым оказалось и техническое решение проблемы.
Практически на любой элемент стали изготавливать свою собственную лампу с
полным катодом. Внутри катодной полости, покрытой металлом или сплавом
требуемого элемента, можно создать высоковольтный разряд; если на лампу
подать напряжение, то атомы материала катода начнут излучать
характеристические фотоны. Когда излучение пропускают через газообразную
пробу, его интенсивность уменьшается, и по разности в интенсивностях
определяют содержание элемента в пробе.
Как и в других количественных методах, в атомно-абсорбционной спектрометрии широко используется построение градуировочных графиков по стандартным образцам.
3.2.1.3. Рентгеноспектральный анализ
Основа метода проста. Образец бомбардируют рентгеновскими лучами, которые выбивают электроны из внутренних оболочек, и затем определяют энергию испускаемых фотонов. Известно, что высокоэнергетическое излучение может выбить электрон, занимающий внутреннюю электронную орбиту, расположенную вблизи атомного ядра. Если место выбитого электрона займет электрон, ранее находившийся на соседней оболочке, то за счет разности в энергиях двух электронов произойдет излучение рентгеновских фотонов.
Среди излучений, сопровождающих переходы между различными электронными оболочками, рентгеновское излучение отличается наибольшей энергией, а рентгеновские лучи попадают в диапазон наиболее коротких волн электромагнитного спектра (5 – 0,01 нм). Испускание рентгеновских лучей связано с переходами электронов между внутренними оболочками, энергетические уровни которых не зависят от состояния валентных электронных оболочек. Это позволяет использовать рентгеноспектральный анализ для определения концентрации элементов, находящихся как в виде свободных атомов, так и входящих в состав молекул. Не отражается на ходе анализа и агрегатное состояние образца: метод пригоден для анализа газов, жидкостей и твердых тел. Отсутствие влияния свободных и связанных валентных электронов приводит к тому, что на электронные переходы, вызывающие испускание рентгеновских фотонов, не «накладываются» изменения состояния других электронных оболочек. В результате в рентгеновском спектре наблюдаются не размытые полосы, а дискретные линии.
Для возбуждения образца используют высокоэнергетический источник, создающий пучок электронов, рентгеновских лучей или радиоактивное излучение. В отличие от атомно-эмиссионной спектрометрии в рентгеновской спектроскопии оптическими элементами являются не линзы, а система коллиматоров и кристалл-ионохроматор. Однако назначение этих элементов такое же, как и линз: сфокусировать излучение исследуемого образца в пучок и разделить его по длинам волн. Диспергирующее действие кристалла- монохроматора основано на дифракции рентгеновских лучей при взаимодействии с атомами, расположенными в строго определенных узлах кристаллической решетки. При дифракции рентгеновского излучения на кристаллографических плоскостях хорошо образованного кристалла в зависимости от угла падения лучей и ориентации плоскостей в пространстве излучение может усиливаться либо ослабляться. Поскольку в кристалле имеется очень много плоскостей, на которых и происходит дифракция, угол отражения рентгеновских лучей от кристалла будет изменяться в соответствии с длиной волны излучения. Как и в оптическом спектрофотометре, вращающийся монохроматор последовательно направляет лучи с различной длиной волны на детектор.
Детектирующее устройство должно отвечать многим требованиям. Это связано с тем, что рентгеновское излучение имеет большую энергию, но низкую интенсивность. Невелика и вероятность того, что возбуждение под действием рентгеновского излучения приведет к выбиванию электрона из внутренней оболочки. Поэтому детектор должен регистрировать каждый рентгеновский фотон, испущенный образцом.
Для детектирования применяют счетчики разной конструкции. Один из них – счетчик Гейгера – Мюллера. Он представляет собой цилиндрический катод, по оси которого протянута металлическая нить, образующая анод. Между катодом и анодом поддерживается разность потенциалов. Счетчик наполнен газом и в отсутствие заряженных частиц ток в цепи не проходит. Если, однако, через входное окошко в цилиндр попадает рентгеновский фотон, одна из молекул газа ионизируется. При некоторых условиях ионизации подвергается даже не одна, а сразу несколько молекул газа. Появление заряженных частиц приводит к падению разности потенциалов между электронами, в цепи возникает ток, величину которого легко измерить. Ионы, образованные при попадании заряженной частицы, притягиваются электродами и быстро нейтрализуются; между катодом и анодом вновь устанавливается первоначальная разность потенциалов, и ток прекращается до появления в пространстве между электродами следующего фотона.
3.2.1.4.Молекулярный спектральный анализ
Молекулярный спектральный анализ основан на изучении спектров электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазонах электромагнитных волн.
При спектрофотометрическом анализе световой поток видимого или ультрафиолетового излучения от источника света через систему оптических зеркал попадает в монохроматор, где свет разлагается на отдельные компоненты, из которых выходная щель монохроматора в зависимости от угла поворота решетки выделяет свет определенной длины волны (близкого диапазона волн). Такой «профильтрованный» свет и попадает на образец. Путем поворота монохроматора можно добиться того, что на анализируемый образец. Путем поворота монохроматора можно добиться того, что на анализируемый образец будет попадать свет заданной длины волны. Интенсивность светового потока, проделавшего путь от источника излучения через монохроматор и образец, измеряется в фотоприемнике. По устройству спектрофотометры, работающие в видимой и ультрафиолетовой областях спектра, между собой почти не отличаются, однако для исследования в ультрафиолетовой области необходим особый источник излучения и специальные кварцевые кюветы, поскольку обычное стекло поглощает ультрафиолетовые лучи.
Возможность применения явления поглощения света в количественном анализе основана на строгих математических зависимостях.
На первом этапе работы со спектрофотометром необходимо обеспечить
постоянную плотность светового потока, то есть качество источника излучения
и всей оптической системы преобразований светового потока. Затем готовят
«холостые пробы», которые по своему составу близки к анализируемым
образцам, но не содержат даже следовых количеств определяемых компонентов.
Интенсивность света, пропущенного холостым раствором, принимается за
нулевое значение. Эта операция, получившая название установки нуля, очень
важна, потому что свет определенной длины волны зачастую поглощает не один, а сразу несколько компонентов раствора. В этих случаях результаты анализов
оказываются неточными, и чтобы уменьшить погрешности, приходится проводить
довольно сложные расчеты и вносить затем соответствующие поправки. Таким
образом, в ходе анализа на пути светового потока помещается, прежде всего
«холостой» раствор, показание регистрирующего прибора выводится на нулевую
отметку, затем на место «холостого» образца устанавливается анализируемый
образец и регистрируется показание прибора.
В современных спектрофотометрах такая двухступенчатая схема измерений
заменена на одноступенчатую. Для этого свет, выходящий из монохроматора, делится на два потока, которые направляются на две кюветы (специальные
емкости, в которые наливаются растворы для измерения) с растворами образца
и «холостой» пробы. Детектор воспринимает сигналы от каждого светового
потока, и, если плотности этих потоков между собой заметно отличаются, то
часть светового потока начинают отсекать путем введения оптического клина.
По мере того как толщина клина увеличивается, интенсивность потока света
снижается, и, наконец, при определенном положении клина плотность обоих
потоков становится одинаковой. Аналитику остается только зарегистрировать
положение клина, которое зависит от поглощения анализируемого образца.
Последнюю операцию – пересчет показаний детектора на концентрацию
анализируемого компонента – выполняет микропроцессор.
Молекула не является какой-то жесткой конструкцией. В то время пока электроны непрерывно вращаются по своим орбитам, атомы, объединенные в молекулу, также не статичны, а, как правило, совершают те или иные движения относительно друг друга. В двухатомных молекулах движения (называемые колебаниями) вдоль линии связи приводят к изменению расстояния между соседними атомами (валентные колебания), а в многоатомных и к изменению угла между соседними связями (деформационные колебания). Каждый атом колеблется с собственной частотой и амплитудой. Тепловая энергия, выделяющаяся при таких колебаниях, по своей величине соответствует излучению возбужденной молекулы в инфракрасной (ИК) области спектра. Это означает, что, поглотив энергию одного ИК-фотона, атомы, образующие химическую связь, начнут колебаться быстрее, а испустив энергию ИК-фотона, уменьшают частоту колебаний.
Для атомов, входящих в молекулу, характерны движения еще одного вида – вращения атомов вокруг б-связи. Переходы между вращательными энергетическими уровнями сопровождаются меньшими изменениями энергий, чем между колебательными уровнями, и их можно наблюдать в дальней инфракрасной или микроволновой областях.
Рекомендуем скачать другие рефераты по теме: ответы 2011, шпоры по менеджменту.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата