Алгебраические расширения полей
Категория реферата: Рефераты по математике
Теги реферата: диплом купить, банк курсовых работ бесплатно
Добавил(а) на сайт: Jakobson.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
В случае характеристики нуль согласно сказанному выше каждый неразложимый многочлен (а потому и каждое алгебраическое расширение) является сепарабельным. Позднее мы увидим, что большинство наиболее важных и интересных расширений полей сепарабельны и что существуют целые классы полей, вообще не имеющих несепарабельных расширений (так называемые «совершенные поля»). По этой причине в дальнейшем все связанное специально с несепарабельными расширениями набрано мелким шрифтом.
Рассмотрим теперь алгебраическое расширение S = D (q). Когда степень n уравнения f(x) = 0, определяющего это расширение, равна степени (S : D), редуцированная степень m оказывается равной числу изоморфизмов поля S в следующем смысле: рассмотрим лишь такие изоморфизмы S@S', при которых элементы подполя D остаются неподвижными и, следовательно, S переводится в эквивалентное поле S' (изоморфизмы поля S над полем D) и при которых поле-образ S' лежит вместе с полем S внутри некоторого общего для них поля W. В этих условиях имеет место теорема:
При подходящем выборе поля W расширение S=D(q) имеет ровно m изоморфизмов над D и при любом выборе поля W поле S не может иметь более m таких изоморфизмов.
Доказательство. Каждый изоморфизм над D должен переводить элемент q в сопряженный с ним элемент q' из W. Выберем W так, чтобы f(x) разлагался над W на линейные множители; тогда окажется, что элемент q имеет ровно m сопряженных элементов q,q'... При этом, как бы ни выбиралось поле W, элемент q не будет иметь в нем более m сопряженных. Заметим теперь, что каждый изоморфизм D(q)@D(q') над D полностью определяется заданием соответствия q®q'. Действительно, если q переходит в q' и все элементы из D остаются на месте, то элемент
3akqk (ak0D)
должен переходить в
3akqNk
а этим определяется изоморфизм.
В частности, если q — сепарабельный элемент, то m = n и, следовательно, число изоморфизмов над основным полем равно степени расширения.
Если имеется какое-то фиксированное поле, содержащее все рассматриваемые поля, в котором содержатся все корни каждого уравнения f(x) = 0 (как, например, в поле комплексных чисел), то в качестве W можно раз и навсегда взять это поле и поэтому отбросить добавление «внутри некоторого W» во всех предложениях об изоморфизмах. Так всегда поступают в теории числовых полей. Позднее мы увидим, что и для абстрактных полей можно построить такое поле W.
Обобщением приведенной выше теоремы служит следующее утверждение:
Если расширение S получается из D последовательным присоединением m
алгебраических элементов a1..., am, причем каждое из ai,- является корнем
неразложимого над D(a1..., ai-1) уравнения редуцированной степени n'i, то
m
расширение S имеет ровно Õni¢ изоморфизмов над D и ни в одном
1
расширении нет большего числа таких изоморфизмов поля S.
Доказательство. Для m = 1 теорема уже была доказана выше. Предположим ее справедливой для расширения S1 = D(a1..., am-1): в некотором подходящем расширении
m-1
W1 есть ровно Õ ni¢ изоморфизмов поля S над D.
1 m-1
Пусть S1®S1— один из этих Õ ni¢ изоморфизмов. Утверждается, что в подходящим образом выбранном поле W он может быть продолжен до изоморфизма S = S1 (am) @ S= S(am) не более чем n¢m способами.
Элемент am удовлетворяет некоторому уравнению f1(x) = 0 над S1 с n¢m различными корнями. С помощью изоморфизма S1®S1многочлен f1(x) переводится в некоторый многочлен f1(x). Но тогда f1(x) в подходящем расширении имеет опять-таки n¢m различных корней и не больше. Пусть am— один из этих корней. В силу выбора элемента am изоморфизм S1@S1 продолжается до изоморфизма S (am) @ S (am) с am®am одним и только одним способом: действительно, это продолжение задается формулой
åckamk ®å ckamk
Рекомендуем скачать другие рефераты по теме: рефераты без регистрации, реферат влияние.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата