Билеты по геометрии
Категория реферата: Рефераты по математике
Теги реферата: шпоры по психологии, контрольная работа 10 класс
Добавил(а) на сайт: Kozyrev.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Доказательство: рассмотрим какие-нибудь две диагонали параллелепипеда, например АС1 и ВД1. Так как четырехугольники АВСД и ДД1С1С - параллелограммы с общей стороной СД, то их стороны АВ и Д1С1 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым АД1 и ВС1. Следовательно, четырехугольник ВАД1С1 - параллелограмм. Диагонали параллелепипеда АС1 и ВД1 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам. Аналогично доказываются другие диагонали. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.
Билет №2. Параллельные прямые.Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.
Теорема 16.1: через точку вне данной прямой можно провести прямую, параллельную данной и только одну.
Замечание: утверждение единственности в теореме 16.1 не является простым следствием аксиомы параллельных, так как этой аксиомой утверждается единственность прямой, параллельной данной в данной плоскости. Поэтому она требует доказательства.
Доказательство: пусть а - данная прямая и А - точка, не лежащая на этой прямой. Проведем через прямую и точку плоскость a . Проведем через точку А в плоскости a прямую а1, параллельную а. Докажем, что прямая а1, параллельная а, единственна. Допустим, что существует другая прямая а2, проходящая через точку А и параллельная прямой а. Через прямые а и а2 можно провести плоскость a 2. Плоскость a 2 проходит через прямую а и точку А, следовательно по теореме 15.1 она совпадает с a . Теперь по аксиоме параллельных прямые а1 и а2 совпадают. Теорема доказана.
Площадь сферы. (вывод формулы).Площадь поверхности сферы - предел отношения объема слоя, покрывающего поверхность, к толщине этого слоя, если толщина этого стремиться к нулю.
Билет №3. Прямая, параллельная плоскости.Пряма и плоскость называются параллельными, если они не пересекаются.
Теорема 16.3: если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.
Доказательство: пусть a - плоскость и а - не лежащая в ней прямая и а1 - прямая в плоскости a , параллельная прямой а. Проведем плоскость b через прямые а и а1. Плоскости a и b пересекаются по прямой а1. Если бы прямая а пересекала плоскость a , то точка пересечения принадлежала бы прямой а1. Но это невозможно, так как прямые а и а1 параллельны. Итак, прямая а не пересекает плоскость a , а значит, параллельна плоскости a . ЧТД.
Вывод формулы объема конуса.Конусом (а точнее круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Прямой конус - прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.
Билет №4. Параллельные плоскости.Две плоскости называются параллельными, если они не пересекаются.
Теорема 16.4: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Доказательство: пусть a и b - данные плоскости, а1 и а2 - прямые в плоскости a , пересекающиеся в точке А, в1 и в2 - соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, т.е. пересекаются по некоторой прямой с. По теореме 16.3 прямые а1 и а2 , как параллельные прямым в1 и в2, параллельны плоскости b , и поэтому они не пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости a через точку А проходят две прямые (а1 и а2), параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.
Вывод формулы объема пирамиды. Билет №5. Теорема об отрезках параллельных прямых, заключенных между двумя параллельными плоскостями.Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны. Действительно, согласно определению параллельные прямые - это прямые, которые лежат в одной плоскости и не пересекаются. Наши прямые лежат в одной плоскости - секущей плоскости. Они не пересекаются, так как не пересекаются содержащие их параллельные плоскости. Значит, прямые параллельны. ЧТД.
Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны. Действительно, пусть a и b - параллельные плоскости, а и в - пересекающие их параллельные прямые, А1, А2,и В1, В2 - точки пересечения прямых с плоскостями (см рисунок). Проведем через прямые а и в плоскость. Она пересекает плоскости a и b по параллельным прямым А1В1 и А2В2. Четырехугольник А1В1В2А2 - параллелограмм, т.к. у него противолежащие стороны параллельны. А у параллелограмма противолежащие стороны равны. Значит А1А2=В1В2. ЧТД.
Касательная плоскость - плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А.
Теорема 20.5: касательная плоскость имеет с шаром только одну общую точку - точку касания.
Доказательство: пусть a - плоскость, касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости a , отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ>ОА=R. Следовательно точка Х не принадлежит шару. Теорема доказана.
Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку, то касательная прямая тоже имеет с шаром только одну общую точку - точку касания.
Билет №6. Прямая, перпендикулярная плоскости.Две прямые называются перпендикулярными, если угол между ними равен 900. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Теорема 17.2: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.
Доказательство:
Площадь боковой поверхности пирамиды.Теорема 19.6: боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.
Билет №7. Теорема о трех перпендикулярах.Теорема 17.5: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Рекомендуем скачать другие рефераты по теме: курсовые, тезис.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата