Дисперсионный анализ
Категория реферата: Рефераты по математике
Теги реферата: реферат отрасль, реферат электрические
Добавил(а) на сайт: Роман.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата
|
- |
++ |
||||||||
Задачи сравнитель- ного (пространствен-ного) анализа |
++ |
- |
+ |
+ |
++ |
+++ |
++ |
++ |
- |
+ |
Задачи факторного анализа |
+ |
+ |
++ |
- |
++ |
+++ |
+ |
++ |
- |
+ |
К большинству сложных систем применим принцип Парето, согласно которому 20 % факторов определяют свойства системы на 80 %. Поэтому первоочередной задачей исследователя имитационной модели является отсеивание несущественных факторов, позволяющее уменьшить размерность задачи оптимизации модели.
Анализ дисперсии оценивает отклонение наблюдений от общего среднего. Затем вариация разбивается на части, каждая из которых имеет свою причину. Остаточная часть вариации, которую не удается связать с условиями эксперимента, считается его случайной ошибкой. Для подтверждения значимости используется специальный тест - F-статистика.
Дисперсионный анализ определяет, есть ли эффект. Регрессионный анализ позволяет прогнозировать отклик (значение целевой функции) в некоторой точке пространства параметров. Непосредственной задачей регрессионного анализа является оценка коэффициентов регрессии /16/.
Слишком большая размерность выборок затрудняет проведение статистических анализов, поэтому имеет смысл уменьшить размер выборки.
Применив дисперсионный анализ можно выявить значимость влияния различных факторов на исследуемую переменную. Если влияние фактора окажется несущественным, то этот фактор можно исключить из дальнейшей обработки.
3.1 Векторные авторегрессии
Макроэконометристы должны уметь решать четыре логически отличающиеся задачи:
- описание данных;
- макроэкономический прогноз;
- структурный вывод;
- анализ политики.
Описание данных означает описание свойств одного или нескольких временных рядов и сообщение этих свойств широкому кругу экономистов. Макроэкономический прогноз означает предсказание курса экономики, обычно на два-три года или меньше (главным образом потому, что прогнозировать на более длинные горизонты слишком трудно). Структурный вывод означает проверку того, соответствуют ли макроэкономические данные конкретной экономической теории. Макроэконометрический анализ политики происходит по нескольким направлениям: с одной стороны, оценивается влияние на экономику гипотетического изменения инструментов политики (например налоговой ставки или краткосрочной процентной ставки), с другой стороны, оценивается влияние изменения правил политики (например переход к новому режиму монетарной политики). Эмпирический макроэкономический исследовательский проект может включать одну или несколько из этих четырех задач. Каждая задача должна быть решена таким образом, чтобы были учтены корреляции между рядами по времени.
В 1970-х годах эти задачи решались с использованием разнообразных методов, которые, если оценить их с современных позиций, были неадекватны по нескольким причинам. Чтобы описать динамику отдельного ряда, достаточно было просто использовать одномерные модели временных рядов, а чтобы описать совместную динамику двух рядов – спектральный анализ. Однако отсутствовал общепринятый язык, пригодный для систематического описания совместных динамических свойств нескольких временных рядов. Экономические прогнозы делались либо с использованием упрощенных моделей авторегрессии — скользящего среднего (ARMA), либо с использованием популярных в то время больших структурных эконометрических моделей. Структурный вывод основывался либо на малых моделях с одним уравнением, либо на больших моделях, идентификация в которых достигалась за счет плохо обоснованных исключающих ограничений, и которые обычно не включали ожидания. Анализ политики на основе структурных моделей зависел от этих идентифицирующих предположений.
Наконец, рост цен в 1970-е годы рассматривался многими как серьезная неудача больших моделей, которые в то время использовались для выработки политических рекомендаций. То есть это было подходящее время для появления новой макроэконометрической конструкции, которая могла бы решить эти многочисленные проблемы.
В 1980 году была создана такая конструкция – векторные авторегрессии (VAR). На первый взгляд, VAR – не более, чем обобщение одномерной авторегрессии на многомерный случай, и каждое уравнение в VAR – не более, чем обычная регрессия по методу наименьших квадратов одной переменной на запаздывающие значения себя и других переменных в VAR. Но этот вроде бы простой инструмент дал возможность систематически и внутренне согласованно уловить богатую динамику многомерных временных рядов, а статистический инструментарий, который сопутствует VAR, оказался удобным и, что очень важно, его было легко интерпретировать.
Выделяют три различных VAR-модели:
- приведенная форма VAR;
- рекурсивная VAR;
- структурная VAR.
Все три являются динамическими линейными моделями, которые связывают текущие и прошлые значения вектора Yt n-мерного временного ряда. Приведенная форма и рекурсивные VAR – это статистические модели, которые не используют никакие экономические соображения за исключением выбора переменных. Эти VAR используются для описания данных и прогноза. Структурная VAR включает ограничения, полученные из макроэкономической теории, и эта VAR используется для структурного вывода и анализа политики.
Приведенная форма VAR выражает Yt в виде распределенного лага прошлых значений плюс серийно некоррелированный член ошибки, то есть обобщает одномерную авторегрессию на случай векторов. Математически приведенная форма модели VAR – это система n уравнений, которые можно записать в матричной форме следующим образом:
(17)
где - это n l вектор констант;
A1, A2, ..., Ap – это n n матрицы коэффициентов;
t, - это nl вектор серийно некоррелированных ошибок, о которых предполагается, что они имеют среднее ноль и матрицу ковариаций .
Ошибки t, в (17) – это неожиданная динамика в Yt, остающаяся после учета линейного распределенного лага прошлых значений.