Дуалистические свойства математики и их отражение в процессе преподавания
Категория реферата: Рефераты по математике
Теги реферата: решебник по математике 5, реферат на тему система
Добавил(а) на сайт: Tupicyn.
Предыдущая страница реферата | 1 2
Обратимся к пропедевтическому компоненту заданий 2 и 3. Прямые вычисления показывают, что и , если . Последнее равенство можно переписать в различных видах, например, или . Данные равенства можно трактовать с различных точек зрения. Во-первых, мы получили еще один пример элементарной функции , первообразная которой не элементарна. Во-вторых, мы видим, что в некоторых случаях функцию, заданную словесно, можно задать аналитически. Таковы, например, функции , и , которые поначалу задаются словесно и лишь затем приобретают свое аналитическое выражение. В-третьих, функции и обладают парадоксальными свойствами: их производные равны, однако функции не отличаются друг от друга на аддитивную константу, поскольку . Данное наблюдение находится в кажущемся противоречии с условиями постоянства функции и следствием из него [4, с. 268]. Студентам полезно разобраться в том, что противоречия на самом деле нет, поскольку производные обеих функций определены не на промежутке, как того требует теорема, а на объединении промежутков.
Вернемся к рассмотрению дуалистических свойств математики.
Математике присущ индуктивно-дедуктивный дуализм. Это означает, что природа умозаключения в математике является одновременно и индуктивной, и дедуктивной. Интуиция, основанная на индуктивных умозаключениях, служит средством первичного получения результата, а логика, основанная на дедукции, служит средством его строгого обоснования.
О соотношении индукции и дедукции, интуиции и логики писали такие выдающиеся математики, как Ж.Адамар, Г.Вейль, Ф.Клейн и многие другие. Особенно много внимания уделяет этому А.Пуанкаре [3, с. 8, 11-21, 159-169, 309-320]. Приведенное выше утверждение об индуктивно-дедуктивном дуализме математики является всего лишь кратким выражением мыслей ее создателей. Для нас сейчас важнее то обстоятельство, что для классиков науки размышления о природе умственных действий в области математики оказываются тесно связанными с вопросами ее преподавания. Говоря об интуиции, А.Пуанкаре пишет, что “без нее молодые умы не могли бы проникнуться пониманием математики; они не научились бы ее любить и увидели в ней лишь пустое словопрение; без нее особенно они никогда не сделались бы способными применять ее” [3 с, 165]. Ключевая мысль А.Пуанкаре указывает на сходство мыслительных процессов исследователя и студента: “Нам нужна способность, которая позволяла бы видеть цель издали, а эта способность есть интуиция. Она необходима исследователю в выборе пути, она не менее необходима для того, кто идет по его следам и хочет знать, почему он выбрал его” [3, c. 166].
В сложившихся условиях, когда индуктивная природа математического творчества недостаточно раскрывается в процессе преподавания, когда абсолютное большинство учебников написано дедуктивным методом, а задачники в значительной мере ориентированы на выработку математической техники, преподавателям следует акцентировать индуктивное начало математики и выдерживать этот акцент до тех пор, пока в студенческом сообществе не сформируется устойчивое представление о равноправии обоих компонентов математики. Задания 1-3 иллюстрируют возможность такого акцентирования в рамках государственных образовательных стандартов (кстати, отнюдь не высоких). Действительно, с одной стороны, в них используется традиционный школьный материал, а с другой стороны, задания носят явно индуктивный характер.
Краткий обзор взглядов классиков математики на индуктивную природу математического творчества содержится, например, в [7, 8].
Математике присущ эмпирико-теоретичекий дуализм источников ее развития. Это означает, что существует два типа движущих идей современной математики: идеи естественнонаучного, эмпирического происхождения и теоретические идеи, появившиеся внутри математики.
Дж. фон Нейман [2] называет два раздела математики, идеи которых имеют заведомо эмпирическое происхождение – геометрию и математический анализ. Это именно те ее разделы, к которым как нельзя лучше применимо название “чистая математика”. Более того, создание математического анализа “в большей мере, чем что либо другое, знаменует рождение современной математики”. К разделам второго типа, изобретенным для внутреннего, математического потребления, Дж. фон Нейман относит абстрактную алгебру, топологию, теорию множеств. Двумя удивительными примерами служат дифференциальная геометрия и теория групп, поскольку поначалу их считали абстрактными, неприкладными дисциплинами и лишь впоследствии они нашли широкое применение в физике. Однако и поныне они развиваются в основном в абстрактном духе, далеком от приложений. Кратко говоря, “двоякий лик – подлинное лицо математики, и я не верю, что природу математического мышления можно было бы рассматривать с какой-нибудь единой упрощенной точки зрения, не принося при этом в жертву самую сущность” [2].
Эмпирический компонент источников развития достаточно хорошо отражен в практике преподавания. Действительно, изучение математического анализа по традиции начинается с рассмотрения физических задач, приводящих к понятиям производной, интеграла, дифференциального уравнения. Развитие теории, как правило, завершается ее приложениями, например, вычислением площадей, объемов, длин дуг, моментов инерции и т.д.
Иначе обстоит дело с теоретическим компонентом источников развития. Например, большинство учебников, а вслед за ними большинство преподавателей, не считают необходимым рассмотрение задач, приводящих к понятиям группы, кольца, поля, векторного пространства и т.д. Между тем обращение к ним могло бы сыграть серьезную мотивирующую роль в изучении студентами такой абстрактной математической дисциплины, какой является алгебра. По мнению автора, определенное невнимание к мотивировкам объясняется исключительно традициями преподавания и никак не связано ни с природой математики, ни с трудностями рассмотрения мотивирующих задач. Например, необходимость изучения систем линейных уравнений могла бы быть проиллюстрирована физической задачей о расчете электрической цепи, экономической задачей об определении стоимости товара, аналитической задачей о восстановлении многочлена по нескольким точкам его графика. Было бы целесообразно иметь полный список задач, приводящих к основным понятиям абстрактной алгебры.
В заключение отметим, что дуалистические свойства математики выражают ее существенные свойства, которые, именно в силу их важности, должны быть осознаны в процессе ее изучения. Для этого преподаватель должен располагать большим набором задач по всем темам изучаемых курсов, которые формируют у студентов представление о дуалистических свойствах математики. Вопрос об их оптимальном использовании следует решать в экспериментальном порядке.
Список литературы
Мордкович А.Г., Мухин А.Е. Сборник задач по введению в анализ и дифференциальному исчислению функций одной переменной. – М.: Просвещение, 1985.
Нейман Дж. фон. Математик // Природа. – 1983. – № 2. – С. 88-95.
Пуанкаре А. О науке. – М.: Наука, 1983.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.
Т. I. – М.: Наука, 1966.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления.
Т. II. – М.: Наука, 1966.
Холодная М.А. Психология интеллекта: парадоксы исследования. – Томск: Изд-во Том. ун-та. Москва: Изд-во “Барс”. – 1997.
Ястребов А.В. О процессе формулировки одной исследовательской задачи // Ярославский педагогический вестник. – № 1-2. – 1999. – С. 66-73.
Ястребов А.В. О процессе формулировки одной исследовательской задачи: окончание // Ярославский педагогический вестник. – № 3-4. – 1999. – С. 62-69.
Скачали данный реферат: Kapishnikov, Гарф, Строганов, Фотеев, Florentij, Jagutjan.
Последние просмотренные рефераты на тему: шпаргалки по философии, реферат формирование, рефераты рб, социальная работа реферат.
Предыдущая страница реферата | 1 2