Двойной интеграл в полярных координатах
Категория реферата: Рефераты по математике
Теги реферата: реферат по биологии 7 класс, изложение 5 класс
Добавил(а) на сайт: Krak.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Выражение
dS = r dj dr
называется двумерным элементом площади в полярных координатах. Итак, чтобы в двойном интеграле (1) перейти к полярным координатам, достаточно координаты x и y заменить по формулам (2), а вместо элемента площади dS подставить выражение (7).
Для вычисления двойного интеграла (6) его нужно заменить повторным. Пусть область интегрирования S определяется неравенствами
Где r1(j), r1(j) - однозначные непрерывные функции на отрезке [a,b]. (рис 2).
Имеем
(8)
Где
F(r,j) = rf(r cosj, r sinj)
Пример 1.
Переходя к полярным координатам j и r, вычислить двойной интеграл
Где S - первая четверть круга радиуса R=1, с центром в точке О(0,0) (рис 3).
Так как
то применяя формулу (6),
получим
Область S определена
Неравенствами
Поэтому на основании формулы (8)
имеем
Пример 2.
В интеграле
(9)
перейти к полярным координатам.
Область интегрирования здесь есть треугольник S, ограниченный прямыми y=0, y=x, x=1 (рис 4).
Рекомендуем скачать другие рефераты по теме: изложение язык, реферат на тему функции.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата