Рефераты | Рефераты по математике | Физическое состояние вещества геосфер | страница реферата 7 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • 30×1011

    52,5

    15×1011

    52,24

    Сравнение периодов собственных колебаний сферы, которые полностью определяются размерами, внутренним строением и упругими свойствами вещества внутри планеты, с моделями К. Буллена, Б. Гутенберга и др. показали для наинизших гармоник от чилийского (1960 г.) и аляскинского (1964 г.) землетрясений, что наблюдаемые периоды больше теоретических. Поскольку крутильные колебания Земли в отличие от сфероидальных не зависят от Р-волн, а зависят от S-волн (Мельхиор, 1976), то это значит, что необходимо отказаться от модели однородного жидкого или однородного твердого ядра и уточнить закон изменения плотности с глубиной. Этому условию удовлетворяла новая модель К. Буллена и М. Ботта, о которой говорилось выше, со скачками плотности на расстоянии 1210 и 1640 км от центра Земли (см. табл. II.2). Расчеты, выполненные различными авторами по результатам обработки приливного запаздывания вращения Земли (М. Молоденский, П. Мельхиор, Н. Такеучи и др.), дают для Земли в среднем m = 1?2×1012 дин×см-2. Приблизительная оценка m внутри Земли в соответствии с данными по земным приливам может быть приведена по формуле Прея:

    Рефераты | Рефераты по математике | Физическое состояние вещества геосфердин×см-2,       (II.9)

    где r – радиус. Таким образом, жесткость m растет с глубиной пропорционально квадрату радиуса. Однако эта оценка грубая, так как не учитывает скачков плотности на границах оболочек и не характеризует особые условия на границе внешнего ядра.

    Чандлеровский период обусловлен изменением главного момента инерции Земли и для абсолютно жесткой сферы определяется из выражения (Мельхиор, 1976):

    Рефераты | Рефераты по математике | Физическое состояние вещества геосфер,          (II.10)

    где А и С – моменты инерции относительно экваториальной и полярной осей; ts – продолжительность звездных суток. Причиной колебания момента инерции Земли являются приливы, меняющие скорость ее вращения. По сравнению с позиционной астрономией, дающей дискретные значения вариации широты как функции угла между отвесной линией и небесным экватором, измеряемого зенит-телескопом, наблюдения над приливами дают более детальные сведения вплоть до суточных колебаний. Однако выбор модели распределения m, которая удовлетворительно согласовалась бы с наблюдениями земных приливов и периодами колебания полюсов, представляет непростую задачу. Расчеты, выполненные М. Молоденским и Н. Такеучи, показывают, что возможен довольно большой интервал m, меняющийся в пределах от 0 до 109 дин×см-2, согласующийся с наблюдениями. П. Мельхиор (1968) полагает, что пока не будут преодолены аппаратурные трудности и не решены проблемы исключения из наблюдений эффектов, не относящихся к приливным нутациям, мы не сможем выбрать реальную модель распределения m. На рис. 11 приведены расчетные данные поведения m, взятые из работы Б. Гутенберга (1963). Предполагаются наиболее вероятными распределения 2 и 3, так как они лучше согласуются с сейсмологическими данными о непрохождении поперечных волн через внешнее ядро и ослабление здесь продольных волн (Гутенберг, 1963; Смит, 1975). Таким образом, непрохождение S-волн через внешнее ядро, свидетельствующее об абсолютной или близкой к этому несжимаемости находящегося здесь вещества, возможно, имеет другую природу, так как данные по приливам указывают на вероятность нулевого m, хотя и значительно меньшего по сравнению с оболочкой. Аналогичный вывод получил Л.Н. Рыкунов в 1959 г. по результатам модельных исследований дифракции ультразвуковых волн. Величина m оказалась равной 107 дин×см-2.

    Особый интерес представляет оценка вязкости Земли как в целом для сферы, так и по отдельным оболочкам. Однако получить этот параметр из наблюдений над приливными деформациями твердой Земли и чандлеровских колебаний полюсов не удается (Мельхиор, 1976). Это значит, что период релаксации возникающих при этом в теле Земли напряжений деформации больше преобладающих периодов указанных колебаний (наибольший период лунных приливов составляет 18,61 года, качаний полюса – 1,2 года). Вместе с тем имеется немало признаков, свидетельствующих о том, что вещество недр Земли обладает определенной вязкостью. Сюда относятся экваториальное вздутие, периодическое и вековое колебательное движение полюса, вековое замедление вращения Земли, затухание ее собственных колебаний, изостазия и др. Поскольку величина

    Рефераты | Рефераты по математике | Физическое состояние вещества геосфер        (II.11)

    характеризует период релаксации напряжений, то отсюда ясно, что наблюдаемые приливные и чандлеровские ряды Т меньше t для всей Земли. Следовательно, имея твердость стали, земной шар массой 5,974×1027 г реагирует на возмущающие силы отнюдь не как абсолютно твердый стальной шарик небольшой массы, а как упруговязкое тело. Поэтому для определения t и, следовательно, h необходимо было найти на Земле процессы с заведомо большой длительностью. Таковым оказалось гляциоизостатическое поднятие Фенноскандии и Канадского докембрийского щита. Обе эти структуры характеризуются отрицательными гравитационными аномалиями (-25 и -35 мгл), соизмеримыми с площадью поднятия (Гутенберг, 1963).

    Начиная с 6800 г. до н.э. величина поднятия составила 270 м и с учетом отрицательной гравитационной аномалии в 25 мгл следует ожидать дополнительного поднятия Фенноскандии еще на 200 м. Таким образом, для максимальной скорости поднятия в центре области, равной 1 м/100 лет, было получено h = 9×1022 пуаз (дин×см-2×с) – для земной коры и h = 9×1021 пуаз – для верхней мантии.

    В существовании постгляциальных поднятий канадского и скандинавского щитов можно было бы сомневаться, так как точность измерений, производимых относительно среднего уровня моря, низка (Гутенберг, 1963). Последнее обусловлено неясностью различных реперов, сохранившихся на побережье Балтийского моря и Великих озер Северной Америки и принимаемых за уровни отсчета, методическими трудностями самих измерений, обусловленных, в частности, нерегулярными колебаниями среднего уровня моря, зависящими от метеоусловий, ветров, количества выпадаемых осадков, а также приливными прогибаниями твердой литосферы с различными периодами и неизвестными амплитудами, глобальными наклонами блоков земной коры, вызванными тектоническими причинами и т.д. Однако начатые еще в 20-х годах А. Вегенером измерения толщины льда в Гренландии, а затем международные исследования в Антарктиде (Атлас Антарктики, 1969) выявили существенное прогибание кристаллической поверхности материка от периферии к центру по мере роста толщины ледяного панциря от 0 – 200 до 1200 – 3000 м. Факт образования под тяжестью льда такого прогиба в твердой кристаллической литосфере, а вместе с ним и значительных отрицательных аномалий силы тяжести служит сильной поддержкой вязкого постгляционального поднятия разгруженной коры в Канаде и Фенноскандии.

    Г. Джеффрис (1922) произвел оценку вязкости внешнего ядра по степени ослабления продольных сейсмических волн, прошедших через него. Верхний предел h оказался равен 109 пуаз, т.е. существенно меньше, чем в коре и мантии. Это согласуется с рассмотренными выше данными об уменьшении жесткости m и, как показал Ф. Берч (1952), если вязкость h превысит 1010 пуаз, то ядро станет обладать невязкими свойствами, характерными для твердых тел. А это уже будет противоречить данным сейсмологии и материалам по изучению собственных колебаний Земли. Нижний предел вязкости для Земли в целом по оценкам ее собственных колебаний составляет 1018 пуаз. Учитывая значительное увеличение скорости распространения упругих волн и плотности в нижней мантии, значительно превышающее аналогичные параметры в земной коре, следует предположить, что и вязкость нижней мантии будет существенно больше 1022 пуаз, т.е. вязкости литосферы.

    Приведенные оценки h, хотя и довольно схематичны, позволяют установить порядок времени релаксации t в различных оболочках Земли.

    Таким образом, на основе (II.11) в среднем для земной сферы имеем:

    Рефераты | Рефераты по математике | Физическое состояние вещества геосферc;        (II.12)

    для литосферы:

    Рефераты | Рефераты по математике | Физическое состояние вещества геосферc;    (II.13)

    для астеносферы:

    Рефераты | Рефераты по математике | Физическое состояние вещества геосферc;     (II.14)

    для нижней мантии (нижний предел h):

    Рефераты | Рефераты по математике | Физическое состояние вещества геосферc;    (II.15)


    Рекомендуем скачать другие рефераты по теме: рефератов, контрольная по русскому языку.



    Предыдущая страница реферата | 2  3  4  5  6  7  8  9  10  11  12 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •