Физика релятивистских эффектов
Категория реферата: Рефераты по математике
Теги реферата: реферат скачать управление, темы рефератов по биологии
Добавил(а) на сайт: Нада.
Предыдущая страница реферата | 1 2 3 4
x = ct,
т. е. со скоростью c. Согласно уравнениям преобразования Лоренца, это простое соотношение между x и t обусловливает соотношение между x' и t'. В самом деле, если в первое и четвёртое уравнения преобразования Лоренца подставить ct вместо x, то получаем
x' = (c – u)t(1 – u2/c2) – 1/2,
t' = (1 – u/c)t(1 – u2/c2) – 1/2,
откуда путём деления получаем
x' = ct'.
Это уравнение описывает распространение света, когда оно отнесено к системе K'. Таким образом, скорость света равна с также и относительно тела отсчёта K. Аналогичный результат может быть получен и для световых лучей, распространяющихся в любом другом направлении. Это и не удивительно, так как уравнения преобразования Лоренца выведены именно в предположении этого результата”.
“Я кладу метровую линейку, — продолжает Эйнштейн, — вдоль оси x' системы K' так, чтобы её начало находилось в точке x' = 0, а конец — в точке x' = 1. Какова длина этой линейки относительно системы K? Чтобы узнать это, достаточно спросить лишь, где находятся её начало и конец относительно K в определённый момент t в системе K. Для начала и конца линейки из первого уравнения преобразования Лоренца при t = 0 находим
x (начало линейки) = 0 .(1 – u2/c2)1/2,
x (конец линейки) = 1 .(1 – u2/c2)1/2.
Таким образом, расстояние между обеими этими точками равно (1 – u2/c2)1/2. Но относительно K метровая линейка движется со скоростью u. Отсюда следует, что длина твёрдой метровой линейки, движущейся в направлении своей длины со скоростью u, составляет (1 – u2/c2)1/2. Таким образом, движущаяся твёрдая линейка короче, чем та же линейка, находящаяся в покое, причём тем короче, чем быстрее она движется.…
Рассмотрим теперь секундомер, покоящийся длительное время в начале координат (x' = 0) системы K'. Тогда t = 0 и t = 1 соответствуют двум последовательным ударам этих часов. Для этих моментов времени первое и четвёртое уравнения преобразования Лоренца дают:
t = 0,
t = 1/(1 – u2/c2)1/2.
Относительно системы K часы движутся со скоростью u; при наблюдении из этой системы отсчёта между двумя ударами этих часов проходит не секунда, а t =1/(1 – u2/c2)1/2 секунд, т. е. несколько большее время. Часы, вследствие своего движения, идут медленнее, чем в состоянии покоя”. — Видим, что формулы (2) и (3) получены, Эйнштейном путём последовательного и поочерёдного применения преобразования Лоренца к параметрам x и t, связанных прямой зависимостью x = ct.
Далее продолжим рассуждать за Эйнштейна. С помощью той же, используемой Эйнштейном, подстановки t = x/c два последних преобразования Лоренца представим одним выражением:
x'/x = t'/t = (1 – u/c).(1 – u2/c2) – 1/2 .
Оно означает, что преобразования Лоренца удовлетворяют сформулированному школьником необходимому условию (4): параметры x'/x и t'/t описываются одной и той же функцией деформирования, которая с увеличением скорости u/c непрерывно уменьшается, стремясь к нулю при u = с и подтверждая тем самым наш выбор в пользу соотношения (7). Аналогичные же параметры соотношений Эйнштейна (2) и (3) описываются обратными функциями, так что:
L/L0 = T0 /T = (1 – u2/c2)1/2.
Как же такое могло случиться? Здесь уместно заметить, что преобразования или группа Лоренца не являются количественными, а сводятся к сдвигу в пространстве или повороту системы координат относительно её начала. Сдвига во времени (входящего в преобразования или группу Пуанкаре) этими преобразованиями также не предусмотрено: Лоренц не считал t' истинным физическим временем системы K', а рассматривал его как некую вспомогательную величину, имеющую чисто формальный смысл. Тогда ответ на поставленный вопрос может быть таким: преобразования Лоренца, строго говоря, можно применять только к оценке поведения линейки. Подвергать преобразованиям одновременно оба параметра x' и t', связанных простым соотношением x' = ct', нельзя. Если мы преобразовали расстояние x', то поделив преобразованную величину на константу c, мы получим формулу (7) и тем самым преобразуем и время t'. При поочерёдном преобразовании обоих параметров x' и t' происходит двойное преобразование, ведущее к неверному результату. Налицо совершенно нелепая ошибка — результат игнорирования строгого содержания преобразования Лоренца — и давшая нам повод усомниться в надлежащем усердии Эйнштейна в школьные годы. Впрочем, автор его за это не осуждает, ибо сам в школьные годы не отличался особым усердием.
Как видим, соотношения Эйнштейна (2) и (3) в конечном счёте оказываются не согласованными ни с постулатом постоянства скорости света, ни с квантовой механикой, ни с наблюдениями поперечного эффекта Доплера, ни даже с преобразованиями Лоренца, на которые они якобы непосредственно опираются. А СТО — это персональная ошибка А. Эйнштейна, которую мировая научная общественность по каким-то причинам не желает или не в состоянии осознать и исправить. А это — очень просто.
Как мы здесь убедились, всё становится на свои места, если в качестве элементарного объекта физического исследования рассматривать не изолированную материальную частицу (классическая физика), а материальную пару частица-поле. Иными словами, если учитывать наличие важного посредника между материальной частицей или телом и пространством-временем — физическое или силовое поле. Такую физику мы называем неоклассической, и её огромные возможности продемонстрированы на нашем сайте в статье: “Единство физической картины мира или Очерки неоклассической физики” (http://www.neophysics.narod.ru).
Скачали данный реферат: Эдит, Нырко, Адельфина, Polikarpij, Исакий, Эмма.
Последние просмотренные рефераты на тему: учебный реферат, 6 класс контрольные работы, сочинения 4, реферат деятельность.
Предыдущая страница реферата | 1 2 3 4