Физика солнечных вспышек
Категория реферата: Рефераты по математике
Теги реферата: реферати, сочинение ревизор
Добавил(а) на сайт: Borev.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
в) магнитное пересоединение в плазме. Показано промежуточное (предвспышечное) состояние с непересоединяющим (медленно пересоединяющим) токовым слоем CL.
Отметим, что такое пересоединение в вакууме при всей его простоте - реальный физический процесс. Его можно легко воспроизвести в лаборатории. Пересоединение магнитного потока индуцирует электрическое поле, величину которого можно оценить, разделив величину dФ на характерное время процесса пересоединения dt, то есть время движения проводников. Это поле будет ускорять заряженную частицу, помещенную вблизи точки Х, точнее говоря, линии Х.
Плазма солнечной короны отличается от вакуума очень высокой электрической проводимостью. Как только появляется индуцируемое пересоединением электрическое поле E, оно сразу же порождает электрический ток, направленный вдоль линии Х. Он приобретает форму токового слоя, который препятствуют процессу пересоединения. В плазме высокой проводимости токовый слой делает пересоединение между взаимодействующими магнитными потоками очень медленным. Это приводит к тому, что значительная часть энергии взаимодействия накапливается в виде избытка магнитной энергии, а именно магнитной энергии токового слоя.
Токовые слои и вспышки
В общем случае пересоединяющий токовый слой представляет собой магнито-плазменную структуру, как минимум, двумерную и, как правило, двухмасштабную, поскольку втекание плазмы в слой и вытекание из него осуществляются в ортогональных направлениях. Обычно (особенно в условиях сильного магнитного поля) ширина слоя (2b) много больше его толщины (2a). Это важно, поскольку, чем шире токовый слой, тем большую энергию он может накопить в области взаимодействия магнитных потоков. Между тем, чем толще слой, тем больше скорость диссипации (потери) накопленной энергии. Эти фундаментальные свойства пересоединяющего токового слоя составляют основу модели солнечной вспышки, предложенной выдающимся российским астрофизиком С.И. Сыроватским (1925-1979).
Рис. 3 - Простейшая модель пересоединяющего токового слоя - нейтральный слой.
2в - ширина слоя; 2а - толщина слоя; стрелками показаны направления втекания плазмы в слой и вытекания из него.
В реальных трех измерениях только в последние десятилетия, благодаря космическим исследованиям Солнца стала понятна роль топологических свойств крупномасштабных магнитных полей и кинетических плазменных явлений, вовлеченных в процесс пересоединения во вспышках.
"Радуга" и "молнии" на Солнце
Первоначально взаимодействие магнитных потоков в атмосфере Солнца рассматривалось исключительно как результат всплывания нового магнитного поля из-под фотосферы в корону. Новый магнитный поток, поднимаясь в солнечной атмосфере, взаимодействует со старым, предшествующим магнитным потоком. В действительности, взаимодействие магнитных потоков в атмосфере Солнца - гораздо более общее явление. В 1985 г. автор статьи предложил модель, которая связывает вихревые течения плазмы в фотосфере с появлением в короне особых линий магнитного поля - сепараторов. Сепаратор появляется над S-образным изгибом фотосферной нейтральной линии подобно радуге над изгибом реки. Такие изгибы весьма характерны для магнитограмм больших вспышек.
Рис. 4 - Модель магнитного поля активной области перед вспышкой. Особая линия магнитного поля - сепаратор (Х) над S-образным изгибом фотосферной нейтральной линии (NL) подобен радуге над рекой. Вихревое течение со скоростью V в фотосфере деформирует фотосферную нейтральную линию так, что она приобретает форму буквы S. V_ - конвергентные фотосферные течения (направленные к нейтральной линии); V|| - сдвиговые фотосферные течения (направленные вдоль нейтральной линии). В правом верхнем углу показана структура поля в окрестности сепаратора, вблизи его вершины: B_ - поперечные составляющие поля (перпендикулярные сепаратору), B || - продольная составляющая поля (направленная вдоль сепаратора).
По структуре поля сепаратор отличается от линии Х лишь тем, что содержит продольную составляющую магнитного поля. Наличие продольного поля В||, разумеется, не запрещает процесс пересоединения. Эта составляющая всегда присутствует внутри и вне формирующегося вдоль сепаратора пересоединяющего токового слоя. Она влияет на скорость пересоединения поперечных составляющих поля B_ и, следовательно, на мощность процесса преобразования энергии поля в тепловую и кинетическую энергии частиц. Это позволяет лучше понять и точнее объяснить особенности энерговыделения в солнечной вспышке.
Вспышка - быстрое магнитное пересоединение, которое подобно гигантской молнии вдоль "радуги" сепаратора. Оно связано с сильным электрическим полем (больше 10-30 В/см) в высокотемпературном (более 108 К) турбулентном токовом слое (ВТТТС), несущем огромный электрический ток (порядка 1011 А).
Первичное энерговыделение
Картина вспышки во всем ее многообразии и красоте (см. стр. 1 обложки) - следствие первичного выделения энергии в ВТТТС. Наличие нескольких каналов выделения энергии в токовом слое (течения плазмы, тепловое и электромагнитное излучение, ускоренные частицы) определяет многообразие физических процессов, вызываемых вспышкой в атмосфере Солнца.
Рис. 5 - Вспышки 15 апреля 2002 г. Изображения получены рентгеновским телескопом на спутнике "RHESSI" в диапазоне энергий 10-25 кэВ, который соотвествует тепловому излучению сверхгорячей плазмы:
а) непосредственно перед импульсной фазой;
б) во время импульсного нарастания потока жесткого рентгеновского излучения;
в) в максимуме интенсивности; движущийся вверх источник соответствует началу коронального выброса массы (CME).
Пересоединенные линии магнитного поля вместе со "сверхгорячей" (электронная температура больше 3x107 К) плазмой и ускоренными частицами движутся из ВТТТС со скоростями порядка 103 км/с. Рентгеновский телескоп космической обсерватории "RHESSI" зафиксировал два источника жесткого рентгеновского излучения в короне во время вспышки 15 апреля 2002 г. Один из них находился высоко над солнечным лимбом. Его движение вверх соответствовало зарождению коронального выброса массы в межпланетное пространство. Этот выброс зарегистрировал коронограф на космическом аппарате "SOHO" 16 апреля 2002 г. (Земля и Вселенная, 2003, № 3). Второй источник жесткого рентгеновского излучения находился под сепаратором. Пространственное распределение энергии жесткого рентгеновского излучения и, соответственно, пространственное распределение самых высоких температур во вспышке согласуются с предположением, что между источниками действительно находится пересоединяющий ВТТТС.
"Вторичные" эффекты под радугой
Постепенно охлаждаясь, сверхгорячая плазма становится видимой в более мягком рентгеновском излучении. В области, расположенной под сепаратором, она движется вниз и встречается с другой "горячей" (электронная температура меньше или порядка 3x107 К) плазмой, которая быстро течет вверх, из хромосферы в корону.
Причина этого вторичного (но не второстепенного) течения в том, что мощные потоки тепла и ускоренных частиц из ВТТТС быстро распространяются вдоль пересоединенных линий магнитного поля и моментально нагревают хромосферу по обе стороны от фотосферной нейтральной линии. Так образуются пары вспышечных лент, наблюдаемые в видимых хромосферных линиях и УФ-линиях переходного слоя между короной и хромосферой. Нагретые до высоких температур верхние слои хромосферы "испаряются" в корону. Эффект быстрого расширения нагретой хромосферной плазмы в корону хорошо виден в рентгеновских лучах. "Хромосферное испарение" (так называют это явление) вместе с плазмой, вытекающей из токового слоя, порождает аркады вспышечных петель: длинные или короткие (как во вспышке 15 апреля 2002 г.).
Рис. 6 - Гигантская солнечная вслышка (рентгеновский балл Х17) 4 ноября 2003 г. Прекрасно видна аркада вспышечных петель в короне. Изображение в линиях крайнего ультрафиолетового излучения 171 А получено с помощью УФ-телескопа КА "ТRACE".
Как уже отмечалось, в мягком рентгеновском и УФ-излучениях заключена значительная часть полной энергии вспышки, причем именно они воздействуют на верхние слои атмосферы Земли. Не удивительно, что огромные потоки этого же излучения воздействуют и на атмосферу Солнца (Земля и Вселенная, 1978, № 1): хромосферу и фотосферу, вызывая нагрев и дополнительную ионизацию солнечной плазмы. К сожалению, точности современных наблюдений пока не хватает для изучения столь тонких эффектов.
Рекомендуем скачать другие рефераты по теме: собрание сочинений, реферат на тему производство.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата