Идеальный газ
Категория реферата: Рефераты по математике
Теги реферата: продукт реферат, конспект
Добавил(а) на сайт: Каракозов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Отсюда свободная энергия
Таким образом, при рассматриваемых не слишком низких температурах вращательная часть теплоёмкости оказывается постоянной и равной в соответствии с общими результатами классического рассмотрения. Вращательная часть химической постоянной равна . Существует значительная область температур, в которой выполняется и в то же время колебательная часть свободной энергии, а вместе с нею и колебательная часть теплоёмкости отсутствуют. В этой области теплоёмкость двухатомного газа равна , т.е. , , а химическая постоянная .
В предельном случае низких температур достаточно сохранить два
первых члена суммы:
В том же приближении для свободной энергии:
Энтропия:
И, наконец, теплоёмкость:
Двухатомный газ с молекулами из
одинаковых атомов. Вращение молекул.
Двухатомные молекулы, состоящие из одинаковых атомов, обладают специфическими особенностями, что приводит к необходимости изменить полученные выше формулы.
Прежде всего, остановимся на высокотемпературном случае в классическом рассмотрении. Благодаря тому, что ядра одинаковы, две взаимно противоположные ориентации оси молекулы соответствуют теперь одному и тому же физическому состоянию молекулы. Поэтому классический статистический интеграл (**) должен быть разделён пополам, и приведёт к изменению химической постоянной, которая теперь равна .
Исчезнет также и множитель 2 в аргументе логарифма (***).
Фактически этот вопрос нас интересует в применении к изотопам водорода ( и ), и ниже везде будем иметь в виду именно эти газы. Требование квантовомеханической симметрии по ядрам приводит к тому, что у электронного терма (нормальный терм молекулы водорода) вращательные уровни с чётными и нечётными значениями К обладают различными ядерными кратностями вырождения: уровни с чётными (нечётными) К осуществляются лишь при чётном (нечётном) суммарном спине обоих ядер и имеют относительные кратности вырождения
при полуцелом спине ядер i , или
при целом i.
Для водорода принята терминология, согласно которой молекулы, находящиеся в состояниях с большим ядерным статистическим весом , называют молекулами ортоводорода, а в состояниях с меньшим весом – молекулами параводорода. Таким образом, для молекул и имеем следующие значения статистических весов:
[орто , ] [ , ]
В то время как у молекул с различными ядрами ядерные кратности вырождения у всех вращательных уровней одинаковы и потому учёт этого вырождения привёл бы нас к малоинтересному изменению химической постоянной, здесь оно приводит к изменению самого вида статсуммы, которая теперь выглядит так:
,
где
Соответствующим образом изменится свободная энергия
Рекомендуем скачать другие рефераты по теме: проблема дипломной работы, шпаргалки по русскому.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата