Исследование заряженных аэрозолей электрооптическим методом
Категория реферата: Рефераты по математике
Теги реферата: отечественная история шпаргалки, защита курсовой работы
Добавил(а) на сайт: Куклев.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
На рис. 2 приведено снятое при различных значениях зарядов частиц семейство графиков зависимости величины электрооптического светорассеяния от напряженности E ориентирующего поля прямоугольных однополярных импульсов с частотой следования, равной 1 кГц. Из графиков видно, что величина фотоотклика увеличивается при заряжении частицы хлористого аммония положительно заряженными ионами и уменьшается при заряжении частиц отрицательными ионами.
Эффект выражен тем ярче, чем больший заряд получают аэродисперсные частицы. При больших значениях среднего отрицательного заряда, приходящегося на частицу (-90e, что близко к предельному заряду для частиц этого размера), значение отклика электрооптического светорассеяния заметно уменьшается. Полевые зависимости величины электрооптического светорассеяния имеют характерную S-образную форму. В начальной части кривые изменяются по квадратичному закону (до значений напряженности поля 1-2 кВ/см), при этом крутизна кривых растет с ростом напряженности. После квадратичного участка наблюдается участок перегиба, на котором крутизна кривой начинает уменьшаться. Для участка перегиба характерны напряженности поля 4 6 кВ/см.
После перегиба на кривых наблюдается протяженный пологий участок, тянущийся до значений напряженности примерно 8 кВ/см. При больших напряженностях ориентирующего поля наблюдается резкий спад величины электрооптического отклика (отрицательный наклон кривой), обусловленный началом наблюдаемого визуально электрофоретического движения аэрозолей в электрическом поле. Электрофорез аэрозолей сопровождается образованием линейных нитеобразных комплексов, участвующих в поступательном движении в направлении поля, что маскирует одновременные колебательно-вращательные движения аэрозольных частиц с частотой ориентирующего поля и приводит к снижению электрооптического отклика. Электрофорез отрицательно заряженных аэрозолей начинается несколько раньше, чем у нейтральных и положительно заряженных частиц, следовательно, положительно заряженная аэродисперсная система является более стабильной, чем заряженная отрицательно. Наблюдаемый эффект изменения электрооптического отклика в зависимости от заряда мы объясняем изменением значения индуцированного дипольного момента аэрозольных частиц, происходящим при их ориентации в поле. Появление у частицы индуцированного дипольного момента в последнее время связывают с эффектом поляризации двойного электрического слоя [5, 9]. Описанные выше зависимости электрооптического светорассеяния от частицы ориентирующего поля свидетельствуют о проявлениях концентрационной поляризации двойного электрического слоя (ДЭС).
Зависимость отклика от величины заряда свидетельствует о наличии выравнивающих поверхностных ионных токов, возникающих при отклонении ДЭС от равновесия при помещении частицы в электрическое поле. Заряжение частицы изменяет соотношение составляющих поверхностного ионного тока, протекающего при поляризации ДЭС.
Так, если у положительно заряженных частиц в переменном электрическом поле доминирует ток ионов, связанных со слоем Штерна или имеющих малую подвижность, то это равносильно увеличению постоянного дипольного момента частицы.
Если же у частицы при протекании уравнивающего тока доминирует поток ионов, связанных с диффузным слоем Гуи или имеющих большую подвижность, то это равносильно уменьшению дипольного момента частицы.
На рис. 3 изображено семейство графиков зависимости величины электрического светорассеяния частиц хлорида аммония от квадрата напряженности импульсного ориентирующего поля при постоянной частоте следования импульсов, равной 1 кГц. Графики сняты при различных значениях среднего заряда, приходящегося на одну частицу
Рис. 3. Зависимость электрооптического светорассеяния от квадрата напряженности импульсного ориентирующего поля для разных зарядов частиц.
На графиках отчетливо выделяются три области, характеризующиеся различными степенями ориентации частиц:
линейная зависимость светорассеяния в начальной части кривой соответствует низкой степени ориентации;
перегиб кривой соответствует средним степеням ориентации частиц;
пологая часть кривой соответствует полной ориентации частиц в электрическом поле.
Из кривых видно, что ориентация отрицательно заряженных частиц наступает при меньших значениях напряженностей ориентирующего поля. Так как увеличение или уменьшение дипольного момента у разноименно заряженных частиц связывается нами с особенностями строения их двойного слоя, было решено исследовать электрооптический отклик аэрозольных частиц хлорида аммония с поверхностными слоями, образованными адсорбцией паров различных спиртов и полярных растворителей.
Свежеприготовленные аэрозоли пропускались через проточную кювету, в которой помещалось определенное количество легколетучего растворителя. Над зеркалом жидкости за счет испарения поддерживалось давление паров, характерное для комнатной температуры. При прохождении потока аэрозолей через атмосферу паров происходила адсорбция ионов растворителя на поверхности аэрозольных частиц. Заряжение частиц изменяло адсорбцию ионов и, соответственно, величину электрооптического отклика.
Было исследовано влияние на электрооптический отклик паров амилового и октилового спиртов, хлороформа, ксилола, гексена, ацетона и растворителя № 646. Нами показано, что пары хлороформа, гексена, ксилола и амилового спирта не меняют характер зависимости электрооптического отклика от знака заряда. Так же, как и на воздухе, положительно заряженные частицы демонстрируют больший электрооптический отклик, чем отрицательные. Иная картина наблюдается при адсорбции на частице молекул ацетона, бензина, октилового спирта и растворителя № 646. При этом у отрицательно заряженных частиц наблюдается больший электрооптический отклик, чем у положительных. Эти факты доказывают, что адсорбированные на аэрозольных частицах слои влияют на их электрооптические свойства.
Список литературы
Arendt P., Kallmann H. // Zeitschrift fur Phys. 1926. B. 35. № 6. S. 421-441.
Фукс Н.А. Механика аэрозолей. М.: Изд-во АН СССР, 1955. 352 с.
White H.J. Industrial Electrostatic precipitation. N.Y.: Addison-Wesley Publisching Co., Inc., 1963. 165 p.
Boidstron Y., Brock J.R. // Atmos. Environ. 1970. V. 4. № 1. P. 35-50.
Gentry J.W., Brock J.R. // J. Chem. Phys. 1967. V. 47. № 1. P. 64-69.
Gentry J.M. // J. Aerosol Sci. 1972. V. 3. № 1. P. 65-76.
Brock J.R., Wu M.S. // J. Colloid and Interface Sci. 1970. V. 33. № 3. P. 473-474.
Liu B.Y.H., Yen H.C. // J. Appl. Phys. 1968. V. 39. № 3. P. 1396-1402.
Smith W.B., McDonald J.R. // J. Aerosol Sci. 1976. V. 7. № 2. P. 151-166.
Рекомендуем скачать другие рефераты по теме: решебник 8, отчет о прохождении практики.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата