К парадоксу близнецов
Категория реферата: Рефераты по математике
Теги реферата: эффективность диплом, реферат на тему мир
Добавил(а) на сайт: Dudnik.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Таким образом, на основании только рассмотренной части работы А. Эйнштейна, можно сделать выводы о том, что в связи с большим количеством ошибок, допущенных А. Эйнштейном, предложенные уравнения, определяющие взаимосвязь между временем события в движущейся и покоящейся системах, являются не верными
Однако, несмотря па приведенные замечания можно, очевидно, продолжить рассмотрение данной работы.
Как пишет А. Эйнштейн [7]Отсюда, т.е. из уравнения (2), вытекает своеобразное следствие. Если в точке А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А, то эти часы по прибытии в А будут отставать по сравнению с часами, оставшимися неподвижными.
И далее - пусть часы приобретают очень большую скорость (почти равную с) и будут равномерно двигаться. Когда они снова возвратятся в исходный пункт, откуда они начали движение, то окажется, что положение стрелок этих часов в течение всего их путешествия не изменилось, тогда как на тождественных часах, оставшихся в состоянии покоя в пункте отправления, положение стрелок за это время изменилось весьма существенно
Однако так ли это.
Пусть в системах S и S1 , которые расположены на некотором расстоянии L друг от друга в покоящемся состоянии, находятся приемник и источник сигнала с часами, которые способны регистрировать начало и окончание этого сигнала и, по которым можно определять длительность события в системах. Причем, часы синхронизированы между собой, т.е. показания часов системы S1 соответствуют “времени покоящейся системы” в тех местах, в которых эти часы как раз находятся и, следовательно, стрелки часов в начальный момент времени занимают одно и то же положение.
О событии, длительностью t, происшедшем в системе S1 сообщается сигналом, например, лучом света, который посылается источником и фиксируются в системе S часами приемника.
Так как сигнал должен пройти расстояние L с конечной скоростью с, то приемник зарегистрирует этот сигнал через время и поэтому, согласно показаниям часов приемника, начало и окончание события в системе S1 должно сдвигаться по отношению к системе S на это же время, т.е. на .
Если же учесть тот фактор, что часы представляют собой независимые физические системы, находящиеся в инерциальных системах S и S1,то физические процессы, протекающие в часах, будут проходить по одним и тем же законам. Поэтому, если можно было бы мгновенно сравнить показания часов в системе S1 с часами в системе S в любой момент времени, а также в момент отправки и приема сигнала, то их показания были бы одинаковыми.
Следовательно, длительность события в системе S1 и зарегистрированного в системе S будут одинаковыми.
Причем, если в системе S можно определить время прихода сигнала из системы S1, характеризующего начало и окончание события, возникшего в системе S1, то, как практически можно определить из покоящейся системы начало и окончание события, возникшего в движущейся системе, в связи с конечной скоростью распространения сигнала и возможностью изменения его скорости. Это же касается и определению из системы S1 начала и окончания события, зарегистрированного в системе S.
Пусть часы источника и приемника находятся в начале координат систем S и S1 и синхронизированы между собой, т.е. их показания одинаковы.
Пусть начала координат систем S и S1в момент времени t=0 совпадают, а оси этих систем при их движении будут оставаться параллельными.
В момент времени t=0 система S1 начинает удаляться от покоящейся системы S с постоянной скоростью v, а источник посылает сигнал, длительностью , определяющий событие в системе S1. Момент окончания сигнала и, следовательно, длительность события в движущейся системе, определенная по часам приемника, должна составлять время . В связи с этим, продолжительность события, определенная по часам покоящейся системы, окажется большей действительной длительности события, происшедшего в движущейся системе.
Если система S1 возвращается в исходное состояние, то процессы отправки и приема сигнала будут аналогичны предыдущему, т.е. как и при удалении источника. Однако, в этом случае, продолжительность сигнала, зафиксированная часами приемника, в связи с уменьшением расстояния между системами S и S1, будет все время уменьшаться и когда источник возвратиться в исходное положение то, очевидно, длительность сигнала, отправленного источником и зафиксированного приемником, будет одинаковой.
Кроме того, согласно А. Эйнштейну [8] в качестве сигнала можно использовать, например, звуковые волны, которые распространяются между точками А и В, проходя через среду, неподвижную по отношению к этим точкам. С не меньшим успехом можно пользоваться световыми лучами, распространяющимися в пустоте или однородной среде, неподвижной по отношению к А и В. Оба эти способа передачи сигналов одинаково приемлемы.
В связи с таким утверждением, когда часы вернутся в пункт А, то они, согласно А. Эйнштейна, по прибытии в А будут отставать по сравнению с часами, оставшимися неподвижными еще на гораздо больший промежуток времени, который будет определяться не только скоростью этой системы, но и скоростью сигнала, скоростью звука, посылаемого источником движущейся системы, т.е., показания часов в системе S1 будет зависеть также и от субъективного фактора выбора сигнала.
Однако все это не означает, что время в покоящейся системе ускоряется, а в движущейся замедляется. Это означает только то, что длительность события, возникшего в движущейся системе, определяется при помощи сигнала, луча света или звуковой волны, распространяющегося с конечной скоростью между системами, находящимися в относительном движении.
Часы в системах представляют собой независимые физические системы, находящиеся в инерциальных системах. Вследствие постоянства законов физические процессы, происходящие в часах, будут подчиняться одним и тем же законам и, следовательно, показания часов в движущейся системе в любой момент времени будут соответствовать показаниям часов в покоящейся системе. Вследствие этого, движущиеся часы, по прибытию в пункт А после движения по кривой с постоянной скоростью, даже почти равной с, будут показывать одно и тоже время по сравнению с часами, оставшимися неподвижными. Поэтому окажется, что положение стрелок часов, находящихся в движущейся системе, при их возвращении из путешествия, будет тождественно положению стрелок на часах, оставшихся в состоянии покоя в пункте отправления.
Далее А. Эйнштейн пишет [7]. Следует отметить, что выводы, которые справедливы для этих часов остаются в силе и для любой замкнутой физической системы. Например, если бы мы поместили живой организм в некий футляр и заставили бы всю эту систему совершать такое же движение вперёд и обратно, то можно было бы достичь, что этот организм после возвращения в исходный пункт из своего сколь угодно длинного путешествия изменился бы как угодно мало, в то время как подобные ему организмы, оставшиеся в пункте отправления в состоянии покоя, давно бы уже уступили место новым поколениям.
Как видно, данное утверждение А. Эйнштейна противоречит постулату постоянства физических законов во всех инерциальных системах, т. к. и часы и живые организмы представляют собой физические системы, находящиеся в двух инерциальных системах S и S1 в связи с чем, все физиологические процессы, происходящие в этих организмах подчиняются одним и тем же законам. Поэтому, поскольку часы и живые организмы в системе S1 были синхронизированы в начальный период относительно часов и живых организмов покоящейся системы, то промежуток времени, прошедший в системе S1,будет равен промежутку времени, прошедшему в системе S.
Следовательно, если протекание процесса в этих организмах не будет зависеть непосредственно от скорости их движения, то когда часы и футляр возвращаются в исходный пункт, откуда они начали движение, положение стрелок на обоих часах будет одинаковым. Часы будут показывать время движения системы и футляра в прямом и обратном направлении, а возраст
живых организмов в системе S1 будет равен возрасту их собратьев, оставшихся в покоящейся системе S.
Это связано с тем, что скорость движения футляра, системы, определяет только интенсивность увеличения расстояния между системами.
Чем дальше система удалена от покоящейся системы S, тем больший промежуток времени необходим сигналу, чтобы пройти это расстояние для регистрации события, возникшего в системе , следовательно, тем больший промежуток времени от начала события будет зафиксирован на часах покоящейся системы.
Рекомендуем скачать другие рефераты по теме: реферат беларусь, виды докладов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата