Кластерный анализ
Категория реферата: Рефераты по математике
Теги реферата: капитанская дочка сочинение, рефераты,
Добавил(а) на сайт: Ломадуров.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
б) дивизимные (делимые), в которых число кластеров возрастает, начиная с одного, в результате чего образуется последовательность расщепляющих групп.
Алгоритмы кластерного анализа имеют сегодня хорошую программную реализацию, которая позволяет решить задачи самой большой размерности.
1.7 Данные
Кластерный анализ можно применять к интервальным данным, частотам, бинарными данным. Важно, чтобы переменные изменялись в сравнимых шкалах.
Неоднородность единиц измерения и вытекающая отсюда невозможность обоснованного выражения значений различных показателей в одном масштабе приводит к тому, что величина расстояний между точками, отражающими положение объектов в пространстве их свойств, оказывается зависящей от произвольно избираемого масштаба. Чтобы устранить неоднородность измерения исходных данных, все их значения предварительно нормируются, т.е. выражаются через отношение этих значений к некоторой величине, отражающей определенные свойства данного показателя. Нормирование исходных данных для кластерного анализа иногда проводится посредством деления исходных величин на среднеквадратичное отклонение соответствующих показателей. Другой способ сводиться к вычислению, так называемого, стандартизованного вклада. Его еще называют Z-вкладом.
Z-вклад показывает, сколько стандартных отклонений отделяет данное наблюдение от среднего значения:
, где xi – значение данного наблюдения, – среднее, S – стандартное отклонение.
Среднее для Z-вкладов является нулевым и стандартное отклонение равно 1.
Стандартизация позволяет сравнивать наблюдения из различных распределений. Если распределение переменной является нормальным (или близким к нормальному), и средняя и дисперсия известны или оцениваются по большим выборным, то Z-вклад для наблюдения обеспечивает более специфическую информацию о его расположении.
Заметим, что методы нормирования означают признание всех признаков равноценными с точки зрения выяснения сходства рассматриваемых объектов. Уже отмечалось, что применительно к экономике признание равноценности различных показателей кажется оправданным отнюдь не всегда. Было бы, желательным наряду с нормированием придать каждому из показателей вес, отражающий его значимость в ходе установления сходств и различий объектов.
В этой ситуации приходится прибегать к способу определения весов отдельных показателей – опросу экспертов. Например, при решении задачи о классификации стран по уровню экономического развития использовались результаты опроса 40 ведущих московских специалистов по проблемам развитых стран по десятибалльной шкале:
обобщенные показатели социально-экономического развития – 9 баллов;
показатели отраслевого распределения занятого населения – 7 баллов;
показатели распространенности наемного труда – 6 баллов;
показатели, характеризующие человеческий элемент производительных сил – 6 баллов;
показатели развития материальных производительных сил – 8 баллов;
показатель государственных расходов – 4балла;
«военно-экономические» показатели – 3 балла;
социально-демографические показатели – 4 балла.
Оценки экспертов отличались сравнительно высокой устойчивостью.
Экспертные оценки дают известное основание для определения важности индикаторов, входящих в ту или иную группу показателей. Умножение нормированных значений показателей на коэффициент, соответствующий среднему баллу оценки, позволяет рассчитывать расстояния между точками, отражающими положение стран в многомерном пространстве, с учетом неодинакового веса их признаков.
Довольно часто при решении подобных задач используют не один, а два расчета: первый, в котором все признаки считаются равнозначными, второй, где им придаются различные веса в соответствии со средними значениями экспертных оценок.
1.8. Применение кластерного анализа.
Рассмотрим некоторые приложения кластерного анализа.
Деление стран на группы по уровню развития.
Изучались 65 стран по 31 показателю (национальный доход на душу населения, доля населения занятого в промышленности в %, накопления на душу населения, доля населения, занятого в сельском хозяйстве в %, средняя продолжительность жизни, число автомашин на 1 тыс. жителей, численность вооруженных сил на 1 млн. жителей, доля ВВП промышленности в %, доля ВВП сельского хозяйства в %, и т.д.)
Каждая из стран выступает в данном рассмотрении как объект, характеризуемый определенными значениями 31 показателя. Соответственно они могут быть представлены в качестве точек в 31-мерном пространстве. Такое пространство обычно называется пространством свойств изучаемых объектов. Сравнение расстояния между этими точками будет отражать степень близости рассматриваемых стран, их сходство друг с другом. Социально-экономический смысл подобного понимания сходства означает, что страны считаются тем более похожими, чем меньше различия между одноименными показателями, с помощью которых они описываются.
Рекомендуем скачать другие рефераты по теме: растения реферат, диплом государственного образца.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата