Комплексные числа
Категория реферата: Рефераты по математике
Теги реферата: производство реферат, курсовые
Добавил(а) на сайт: Kandakov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
ные числа , а i – число нового рода, называемое мнимой единицей.
“Мнимые” числа составляют частный вид комплексных чисел
(когда а = 0). С другой стороны, и действительные числа являются частным видом комплексных чисел (когда b = 0).
Действительное число a назовем абсциссой комплексного числа a + bi; действительное число b – ординатой комплексного числа
a + bi. Основное свойство числа i состоит в том, что произведе-
ние i*i равно –1, т.е.
i2= -1. (1)
Долгое время не удавалось найти такие физические величины, над которыми можно выполнять действия, подчинённые тем же правилам, что и действия над комплексными числами – в частности правилу (1). Отсюда названия: “мнимая единица”, “мнимое число” и т.п. В настоящее время известен целый ряд таких физических величин, и комплексные числа широко применяются не только в математике, но также и в физике и технике.
Оставим в стороне вопрос о геометрическом или физическом смысле числа i, потому что в разных областях науки этот смысл различен.
Правило каждого действия над комплексными числами выводится из определения этого действия. Но определения действий над комплексными числами не вымышлены произвольно, а установлены с таким расчетом, чтобы согласовались с правилами действий над вещественными числами. Ведь комплексные числа должны рассматриваться не в отрыве от действительных, а совместно с ними.
3. Соглашение о комплексных числах.
1. Действительное число а записывается также в виде a + 0i (или a – 0i).
П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2.
2. Комплексное число вида 0 + bi называется “чисто мнимым”. Запись bi обозначает то же, что 0 + bi.
3. Два комплекных a + bi, a’ + b’i считаются равными, если у них соответственно равны абсциссы и ординаты, т. е. Если
a = a’, b = b’. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:
2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.
З а м е ч а н и е. Мы еще не определили, что такое с л о ж е н и е комплексных чисел. Поэтому, строго говоря, мы ещё не в праве утверждать, что число 2 + 5i есть сумма чисел 2 и 5i. Точнее было бы сказать, что у нас есть пара действительных чисел: 2 (абсцисса) и 5 (ордината); эти числа порождают число нового рода, условно обозначаемое 5 + 7i.
4.Сложение комплексных чисел
О п р е д е л е н и е. Суммой комплексных чисел a + bi и a’ + b’i называют комплексное число (a + a’) + (b + b’)i.
Это определение подсказывается правилами действий с обачными многочленами.
Пример 1. (-3 + 5i) + (4 – 8i) = 1 - 3i
Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).
Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i
Пример 4. (-2 + 3i) + ( - 2 – 3i) = - 4
Рекомендуем скачать другие рефераты по теме: скачать решебник, дипломная работа 2011.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата