Конструирование задач
Категория реферата: Рефераты по математике
Теги реферата: реферат машины, реферат на тему мыло
Добавил(а) на сайт: Mandryko.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
1.4.4. Повторное решение: АК½½ВС,ÞÐКАО=ÐВСО, ÐАКО=ÐСВО и АК=ВС, Þ АОК= СОВ и АО=ОС, а ВО=ОК.
1.4.5. Формулировка задачи: "Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам". (Составлена самостоятельно).
2. Конструкция.
В задачах этого типа выстраивается сооружение, в качестве деталей которого берутся задачи или теоремы, но данный способ конструирования имеет и обратный переход: чаще всего сложную задачу можно разложить на более простые составляющие, что применяется для решения сложных задач и называется "Частный случай", который рассматривается в следующем пункте.
Преобразование задач одного типа в задачи другого типа – одно из простейших творческих упражнений и часто рекомендуется для самостоятельной работы.
Некоторые задачи конструируются авторами под понравившуюся идею решения. Так же можно сконструировать задачу "под ответ".
Алгоритм конструирования:
2.1. Выбор задачи, утверждений решений или результатов для создания конструкции.
2.2. Решение задач или доказательство утверждений (если задача конструируется под ответ или способ решения этот пункт можно исключить).
2.3. Выбор "деталей" для будущей конструкции (данный пункт также необходим лишь в том случае, когда используются задачи или теоремы).
2.4. Соединение или корректировка выбранных данных.
2.5. Уточнение формулировки.
2.6. Решение получившейся задачи.
Пример 5:
В качестве иллюстрации этого способа конструирования выбрана довольно редко встречающаяся задача-ловушка, которая будет сконструирована под специально подобранные данные.
2.1. В данном случае основой задачи выступает выпуклый четырехугольник с заданными сторонами, две из которых равны одному числу, а две оставшиеся - другому.
2.4. Пусть этот четырехугольник будет иметь длины сторон 6 и 10, и лежать в основании четырехугольной пирамиды, высота которой равна 7, а грани наклонены к плоскости под углом 60°.
2.5. Уточнение формулировки: "В основании четырехугольной пирамиды лежит выпуклый четырехугольник, две стороны которого равны 6 , а две оставшиеся - 10, высота пирамиды равна 7, боковые грани наклонены к плоскости под углом 60°. Найдите объем пирамиды", (ж. “Квант”).
2.6. Дано: АВ=ВС=6, АК=КС=10, h=7, угол к плоскости 60, ОАВСК - пирамида, АВСК - четырехугольник.
Найти: VАВСКО.
Решение:
Двугранные углы при основании равны или 60° или 120°(по условию, но не обязательно 60°, в чем и состоит ловушка), вершина О проектируется в точку, равноудаленную от прямых, образующих четырехугольник, Þ АВСК - не параллелограмм, значит, две соседние стороны равны 6, а две другие, также соседние, 10.
Если у четырехугольника АВСК АВ=ВС=10, АК=КС=6, то существуют две равно - удаленные от его сторон точки (О1 и О2). Расстояния от проекции вершины О до сторон пирамиды равны 7/Ö3 (следствие из условия). Если проекция вершины - точка О1 (центр вписанной в АВСК окружности), то S АВСК=16×7/Ö3, но это невозможно, т.к. S АВСК £60
(наибольшая площадь достигается, если углы ÐКАВ и ÐВСК прямые, тогда
S АВСК = 1/2d1× d2×sin(d1d2)=1/2×8×15× sin 90°=60,Þвершина О проектируется в точку О2,расстояния от которой до сторон равны 7/Ö3, тогда SАВСК = =(10 - 6) 7/Ö3= 28/Ö3 , а VАВСКО=64/Ö3.
Ответ: VАВСКО=64/Ö3.
Рекомендуем скачать другие рефераты по теме: скачать контрольные работы, сочинения по русскому языку.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата