Краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области
Категория реферата: Рефераты по математике
Теги реферата: шпоры, мировая экономика
Добавил(а) на сайт: Akila.
1 2 3 4 5 | Следующая страница реферата
В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.
1.Постановка задачиВ дипломной работе рассматривается задача:
(З)
0.
Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при
2. Оценочный анализ решения задачи.Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности : “Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах” [2].
2.1. Оценка решения сверху.В области t=t , x= рассмотрим решение задачи :
, V(0,x) = ( x ), , (1)
это решение имеет вид [1]:
v (t, x) = . (2)
Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так:
V(t, x) = (2’)
Из принципа максимума [2] заключаем, что:
U( t, x ) V( t, x ). (3)
Таким образом задача сводится к оценке интеграла (2).
2.2. Оценка решения в виде интегралаРазобьем интервал < x на две части и , тогда интеграл (2’) запишется в виде:
V( t, x ) = . (*)
Исследуем знак подинтегрального выражения, принимая во внимание, то что :
; (а)
;
;
где .
После проведенного исследования видно, что
Рекомендуем скачать другие рефераты по теме: жизнь человека реферат, объект реферата.
1 2 3 4 5 | Следующая страница реферата