Математическое моделирование
Категория реферата: Рефераты по математике
Теги реферата: цель реферата, учет реферат
Добавил(а) на сайт: Nikolaenko.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
D x = [ S ( x j - X ) 2 ]/ m ( 10 ) Dy = [ S ( y j - Y ) 2 ]/ m ( 11 )
и являются важными статистическими оценками рассеяния значений какой-либо величины около ее среднего значения.
Величина коэффициента корреляции r может изменяться от 0 при полном отсутствии связи до ±1 при наличии линейной функциональной связи х с у. Если r > 0, между х и у имеет место положительная корреляционная связь, т. е. с ростом параметра х увеличивается параметр у, если r < 0, между х и у имеет место отрицательная связь. С коэффициентом регрессии b в уравнении (2) коэффициент корреляции связан соотношением
r = b s x / s y . (12)Угловой коэффициент регрессии b представляет собой тангенс угла наклона линии регрессии к оси абсцисс . Следовательно, чем больше наклон линии регрессии к оси абсцисс, тем больше значение коэффициента корреляции, т. е. тем значительнее будет изменение функции у при изменении на единицу аргумента х.
Малая величина коэффициента корреляции указывает на отсутствие линейной связи, однако криволинейная связь между рассматриваемыми параметрами при этом может быть достаточно тесной. Коэффициент корреляции отражает не только величину приращения у при изменении х, но и тесноту связи функции и аргумента. Чем больше разброс точек относительно линии регрессии, тем меньше коэффициент корреляции. Это свойство коэффициента корреляции отражено в его формуле в виде соотношения стандартных отклонений.
Для оценки надежности полученного результата используют иногда критерий надежности m , который учитывает как величину коэффициента корреляции, так и число пар измерений. Критерий надежности m рассчитывается по формуле
m = r * [m - 1] 1/2 / (1 - r 2 ), (13)где r— коэффициент корреляции;
т—число пар измерений.
Как видно из формулы критерия надежности, чем выше коэффициент корреляции и большее число пар измерений, тем больше показатель надежности. При m , > 2,6 связь считается статистически достоверной.
Располагая данными можно выполнить анализ взаимосвязи аргумента и функции : построить график с корреляционным полем рассматриваемых показателей, определить теоретическую линию регрессии, оценить тесноту связи для выбранных параметров. Однако, проанализировав конфигурацию корреляционного поля, построенного по исходным данным, можно усмотреть что описание взаимосвязи рассматриваемых параметров с помощью прямой линии не является наилучшей аппроксимацией. Иногда в данное поле корреляции значительно лучше впишется некоторая кривая.
Таким образом из технологического опыта может следовать, что связь между аргументом и функцией имеет криволинейный характер. Возможно, что аппроксимация производственных данных в виде кривой точнее отражала бы существующую взаимосвязь.
КРИВОЛИНЕЙНАЯ ПАРНАЯ РЕГРЕССИЯАппроксимация кривой выполняется тем же путем с использованием метода наименьших квадратов, что и выравнивание по прямой линии . Линия регрессии должна удовлетворять условию минимума суммы квадратов расстояний до каждой точки корреляционного поля. В данном случае в уравнении (1) у представляет собой расчетное значение функции, определенное при помощи уравнения выбранной криволинейной связи по фактическим значениям х j. Например, если для аппроксимации связи выбрана парабола второго порядка, то
y =а + b x + cx2, ( 14 ).а разность между точкой, лежащей на кривой, и данной точкой корреляционного поля при соответствующем аргументе можно записать аналогично уравнению (3) в виде
D yj = yj - ( a + bx +cx2) ( 15 )При этом сумма квадратов расстояний от каждой точки корреляционного поля до новой линии регрессии в случае параболы второго порядка будет иметь вид:
S 2 = S D yj 2= S [yj - ( a + bx +cx2)] 2( 16 )Исходя из условия минимума этой суммы, частные производные S 2 по а, b и с приравниваются к нулю. Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными для определения a, b и с.
S y = m a + b S x + cS x 2 S yx = a S x + b S x 2 + c S x 2.
S yx2 = a S x 2 + bS x 3 + c S x4 . ( 17 ).
Решая систему уравнений относительно a,b и с, находим численные значения коэффициентов регрессии. Величины S y, S x, S x2, S yx, S yx2, S x3, S x4.находятся непосредственно по данным производственных измерений.
Оценкой тесноты связи при криволинейной зависимости служит теоретическое корреляционное отношение h xу , представляющее собой корень квадратный из соотношения двух дисперсий: среднего квадрата s р2 тклонений расчетных значений y' j функции по найденному уравнению регрессии от среднеарифметического значения Y величины y к среднему квадрату отклонений s y2 фактических значений функции y j от ее среднеарифметического значения :
h xу = { s р2 / s y2 } 1/2 = { S (y' j - Y)2 / S (y j - Y)2 } 1/2 ( 18 )Квадрат корреляционного отношения h xу2 показывает долю полной изменчивости зависимой переменной у, обусловленную изменчивостью аргумента х Этот показатель называется коэффициентом детерминации. В отлично от коэффициента корреляции величина корреляционного отношения может принимать только положительные значения от 0 до 1. При полном отсутствии связи корреляционное отношение равно нулю, при наличии функциональной связи оно равно единице, а при наличии регрессионной связи различной тесноты корреляционное отношение принимает значения между нулем и единицей. Выбор типа кривой имеет большое значение в регрессионном анализе, поскольку от вида выбранной взаимосвязи зависит точность аппроксимации и статистические оценки тесноты связи. Наиболее простой метод выбора типа кривой состоит в построении корреляционных полей и в подборе соответствующих типов регрессионных уравнений по расположению точек на этих полях. Методы регрессионного анализа позволяют отыскивать численные значения коэффициентов регрессии для сложных видов взаимосвязи параметров, описываемых, например, полиномами высоких степеней. Часто вид кривой может быть определен на основе физической сущности рассматриваемого процесса или явления. Полиномы высоких степеней имеет смысл применять для описания быстро меняющихся процессов в том случае, если пределы колебания параметров этих процессов значительные.
Применительно к исследованиям металлургического процесса достаточно использовать кривые низших порядков, например параболу второго порядка.
Эта кривая может иметь один экстремум, что, как показала практика, вполне достаточно для описания различных характеристик металлургического процесса.
Результаты расчетов параметров парной корреляционной взаимосвязи были бы достоверны н представляли бы практическую ценность в том случае, если бы используемая информация была получена для условий широких пределов колебаний аргумента при постоянстве всех прочих параметров процесса. Следовательно, методы исследования парной корреляционной взаимосвязи параметров могут быть использованы для решения практических задач лишь тогда, когда существует уверенность в отсутствии других серьезных влияний на функцию, кроме анализируемого аргумента. В производственных условиях вести процесс таким образом продолжительное время невозможно. Однако если иметь информацию об основных параметрах процесса, влияющих на его результаты, то математическим путем можно исключить влияние этих параметров и выделить в “чистом виде” взаимосвязь интересующей нас функции и аргумента. Такая связь называется частной, или индивидуальной. Для ее определения используется метод множественной регрессии.
МНОЖЕСТВЕННАЯ ЛИНЕЙНАЯ РЕГРЕССИЯМножественной регрессией называется взаимосвязь трех и более переменных, или влияние двух и более аргументов на функцию
y = f ( x1 , x2, .... xn). ( 19 )Для простоты рассмотрим случай, когда функция у сопоставляется с двумя аргументами x 1 и x 2 . Такую зависимость графически можно представить в трехмерном пространстве {у, x 1 , x 2} Совокупность всех т точек представляет собой корреляционное пространство. Задача определения связи у от x 1 и x 2 состоит в том, чтобы подобрать такую плоскость, например плоскость Р , которая наилучшим образом вписалась бы в данное корреляционное пространство:
y = a + b1 x 1 + b 2 x2 . ( 20 )При этом под словами “наилучшим образом” понимается удовлетворение требованию наименьших квадратов, т. е. сумма квадратов расстояний каждой точки корреляционного поля от искомой плоскости [уравнение y = a + b1 x 1 + b 2 x2 ] должна быть минимальной. Это расстояние определяется выражением
D yj = yj - ( a + b 1 x 1 + b 2x 2) ( 21Требуется найти значения коэффициентов a, b1 и b 2.
Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными:
Рекомендуем скачать другие рефераты по теме: профессиональные рефераты, бесплатные доклады.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата