Методы решения уравнений, содержащих параметр
Категория реферата: Рефераты по математике
Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D < 0, а при а>ао D > 0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D < 0, а при а>ао D > 0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.
Составим дискриминант уравнения (3):
=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем = 5а+4.
Из уравнения =0 находим — второе контрольное значение параметра а. При этом если , то D < 0; если , то D ≥ 0; и .
Таким образом, осталось решить уравнение (3) в случае, когда и в случае, когда и .
Если , то уравнение (3) не имеет действительных корней;
если же и , то находим ;
если , то и тогда .
Ответ: 1) если , то корней нет;
2) если а = 1, то х =;
3) если , то ;
4) если , то .
Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным
Процесс решения дробно-рациональных уравнений протекает по обычной схеме: данное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, то есть числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы посторонние корни исключить, требуется находить значение параметра, обращающее общий знаменатель в нуль, то есть решать соответствующие уравнения относительно параметра (см. [1]).
Пример. Решить уравнение
. (4)
Решение. Значение а=0 является контрольным. При a=0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:
х2+2 (1 — а) х +а2 — 2а — 3=0. (5)
Найдем дискриминант уравнения (5) = (1 — a)2 — (a2 — 2а — 3) = 4. Находим корни уравнения (5): х1 =а + 1, х2 = а — 3. При переходе от уравнения (4) к уравнению (5) расширилась область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.
Проверка. Исключим из найденных значений х такие, при которых х1+1=0, х1+2=0, х2+1=0, х2+2=0.
Если х1+1=0, т. е. (а+1)+1=0, то а = - 2.
Таким образом, при а = - 2 х1-посторонний корень уравнения (4).
Если х1+2=0, т. е. (а+1)+2=0, то а = - 3.
Таким образом, при а = - 3 x1- посторонний корень уравнения (4).
Если х2+1 =0, т. е. (а-3)+1=0, то а=2.
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата