Модели и методы решения проблемы выбора в условиях неопределенности
Категория реферата: Рефераты по математике
Теги реферата: решебник 6 класс виленкин, ответы 10 класс
Добавил(а) на сайт: Водолеев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Здесь коэффициент Bji принято называть нагрузкой на j-й фактор со стороны i-й переменной, а последнее слагаемое в {3-33} рассматривать как помеху, случайное отклонение для Xi. Число факторов m вполне может быть меньше числа реальных переменных n и ситуации, когда мы хотим оценить влияние всего одного фактора (ту же вежливость продавцов), здесь вполне допустимы.
Обратим внимание на само понятие “латентный”, скрытый, непосредственно не измеримый фактор. Конечно же, нет прибора и нет эталона вежливости, образованности, выносливости и т.п. Но это не мешает нам самим “измерить” их — применив соответствующую шкалу для таких признаков, разработав тесты для оценки таких свойств по этой шкале и применив эти тесты к тем же продавцам. Так в чем же тогда “ненаблюдаемость”? А в том, что в процессе эксперимента (обязательно) массового мы не можем непрерывно сравнивать все эти признаки с эталонами и нам приходится брать предварительные, усредненные, полученные совсем не в “рабочих” условиях данные.
Можно отойти от экономики и обратиться к спорту. Кто будет спорить, что результат спортсмена при прыжках в высоту зависит от фактора — “сила толчковой ноги”. Да, это фактор можно измерить и в обычных физических единицах (ньютонах или бытовых килограммах), но когда?! Не во время же прыжка на соревнованиях!
А ведь именно в это, рабочее время фиксируются статистические данные, накапливается материал для исходной матрицы.
Несколько более сложно объяснить сущность самих процедур факторного анализа простыми, элементарными понятиями (по мнению некоторых специалистов в области факторного анализа — вообще невозможно). Поэтому постараемся разобраться в этом, используя достаточно сложный, но, к счастью, доведенный в практическом смысле до полного совершенства, аппарат векторной или матричной алгебры.
До того как станет понятной необходимость в таком аппарате, рассмотрим так называемую основную теорему факторного анализа. Суть ее основана на представлении модели факторного анализа в матричном виде
X [k·1] = B [k·m] · F [m·1] + D [k·1]
и на последующем доказательстве истинности выражения
R [k·k] = B [k·m] · B*[m·k],
для “идеального” случая, когда невязки D пренебрежимо малы.
Здесь B*[m·k] это та же матрица B [k·m], но преобразованная особым образом (транспонированная).
Трудность задачи отыскания матрицы нагрузок на факторы очевидна — еще в школьной алгебре указывается на бесчисленное множество решений системы уравнений, если число уравнений больше числа неизвестных. Грубый подсчет говорит нам, что нам понадобится найти k·m неизвестных элементов матрицы нагрузок, в то время как только около k2 / 2 известных коэффициентов корреляции. Некоторую “помощь” оказывает доказанное в теории факторного анализа соотношение между данным коэффициентом парной корреляции (например R12) и набором соответствующих нагрузок факторов:
R12 = B11 · B21 + B12 · B22 + … + B1m · B2m .
Таким образом, нет ничего удивительного в том утверждении, что факторный анализ (а, значит, и системный анализ в современных условиях) — больше искусство, чем наука. Здесь менее важно владеть “навыками” и крайне важно понимать как мощность, так и ограниченные возможности этого метода.
Есть и еще одно обстоятельство, затрудняющее профессиональную подготовку в области факторного анализа — необходимость быть профессионалом в “технологическом” плане, в нашем случае это, конечно же, экономика.
Но, с другой стороны, стать экономистом высокого уровня вряд ли возможно, не имея хотя бы представлений о возможностях анализировать и эффективно управлять экономическими системами на базе решений, найденных с помощью факторного анализа.
Не следует обольщаться вульгарными обещаниями популяризаторов факторного анализа, не следует верить мифам о его всемогущности и универсальности. Этот метод “на вершине” только по одному показателю — своей сложности, как по сущности, так и по сложности практической реализации даже при “повальном” использовании компьютерных программ. К примеру, есть утверждения о преимуществах метода главных компонент — дескать, этот метод точнее расчета нагрузок на факторы.
Классификационная схема характеристик сложности задачи выбора пути в условиях неопределённости
Наличие особых ситуаций на террайне зависит от характеристик его сложности. Ниже приведена возможная классификационная схема характеристик сложности задачи выбора пути в условиях неопределенности.
Для исследования задачи выбора эффективного алгоритма маршрутизации о априорно известному графу использовались следующие десять характеристик сложности задачи [1]:
1. Время построения пути.
2. Длина построенного пути.
3. Число ребер пути.
4. Число отброшенных ребер вдоль пути.
5. Размер фронта волны поиска (массива открытых вершин) на заключительной итерации.
Рекомендуем скачать другие рефераты по теме: конспекты по истории, культурология как наука.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата