Непрерывные генетические алгоритмы
Категория реферата: Рефераты по математике
Теги реферата: рассказы, культурология как наука
Добавил(а) на сайт: Платонов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Наиболее популярными и проверенными из этих технологий являются нейронные сети и генетические алгоритмы. Первые коммерческие реализации на их основе появились в 80-х годах и получили широкое распространение в развитых странах.
Теория алгоритмов. Задача коммивояжера.
В настоящее время теория алгоритмов развивается, главным образом, по трем направлениям.
Классическая теория алгоритмов изучает проблемы формулировки задач в терминах формальных языков, вводит понятие задачи разрешения, проводит классификацию задач по классам сложности P, NP и другим.
Теория асимптотического анализа алгоритмов рассматривает методы получения асимптотических оценок ресурсоемкости или времени выполнения алгоритмов, в частности, для рекурсивных алгоритмов. Асимптотический анализ позволяет оценить рост потребности алгоритма в ресурсах (например, времени выполнения) с увеличением объема входных данных.
Теория практического анализа вычислительных алгоритмов решает задачи получения явных функции трудоёмкости, интервального анализа функций, поиска практических критериев качества алгоритмов, разработки методики выбора рациональных алгоритмов.
В рамках классической теории осуществляется классификация задач по классам сложности (P-сложные, NP-сложные, экспоненциально сложные и др.).
К классу P относятся задачи, которые могут быть решены за время, полиномиально зависящее от объёма исходных данных, с помощью детерминированной вычислительной машины (например, машины Тьюринга).
К классу NP - задачи, которые могут быть решены за полиномиально выраженное время с помощью недетерминированной вычислительной машины, т.е. машины, следующее состояние которой не всегда однозначно определяется предыдущими. Работу такой машины можно представить как разветвляющийся на каждой неоднозначности процесс: задача считается решённой, если хотя бы одна ветвь процесса пришла к ответу.
Другое определение класса NP: классом NP (от англ. non-deterministic polynomial) называют множество алгоритмов, время работы которых сильно зависит от размера входных данных, но если предоставить алгоритму некоторые дополнительные сведения (так называемых свидетелей решения), то он сможет достаточно быстро (за время, не превосходящее многочлена от размера данных) решить задачу. Проблема в том, что найти таких свидетелей бывает сложно, поэтому многие алгоритмы из класса NP считаются долгими. Классическим примером NP-задачи является задача коммивояжёра.
Задача коммивояжёра (коммивояжёр — бродячий торговец) заключается в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и т. п.) и соответствующие матрицы расстояний, стоимости и т. п. Как правило, указывается, что маршрут должен проходить через каждый город только один раз, в таком случае выбор осуществляется среди гамильтоновых циклов[1] .
Существует масса разновидностей обобщённой постановки задачи, в частности геометрическая задача коммивояжёра (когда матрица расстояний отражает расстояния между точками на плоскости), треугольная задача коммивояжёра (когда на матрице стоимостей выполняется неравенство треугольника), симметричная и асимметричная задачи коммивояжёра.
Простейшие методы решения задачи коммивояжёра: полный лексический перебор, жадные алгоритмы (метод ближайшего соседа, метод включения ближайшего города, метод самого дешёвого включения), метод минимального остовного дерева. На практике применяются различные модификации более эффективных методов: метод ветвей и границ и метод генетических алгоритмов.
Задача коммивояжёра есть NP-полная задача[2] . Часто на ней проводят обкатку новых подходов к эвристическому сокращению полного перебора.
В основе метода ветвей и границ лежит простое наблюдение, что если нижняя граница для подобласти A дерева поиска больше, чем верхняя граница какой-либо ранее просмотренной подобласти B, то A может быть исключена из дальнейшего рассмотрения. Это обычно выполняется с помощью глобальной переменной m, в которой запоминается минимальная верхняя граница, полученная для всех просмотренных до настоящего времени вариантах; любая вершина дерева поиска, нижняя граница которой больше m, может быть исключена из дальнейшего рассмотрения.
В следующем разделе мы перейдём к рассмотрению генетических алгоритмов.
Генетические алгоритмы. Общее описание. Математический аппарат.
Генетические алгоритмы предназначены для решения задач оптимизации. Примером подобной задачи может служить обучение нейросети, то есть подбора таких значений весов, при которых достигается минимальная ошибка. При этом в основе генетического алгоритма лежит метод случайного поиска. Основным недостатком случайного поиска является то, что нам неизвестно, сколько понадобится времени для решения задачи. Для того чтобы избежать таких расходов времени при решении задачи, применяются методы, проявившиеся в биологии. При этом используются методы открытые при изучении эволюции и происхождения видов. Как известно, в процессе эволюции выживают наиболее приспособленные особи. Это приводит к тому, что приспособленность популяции возрастает, позволяя ей лучше выживать в изменяющихся условиях.
Впервые подобный алгоритм был предложен в 1975 году Джоном Холландом (John Holland) в Мичиганском университете. Он получил название «репродуктивный план Холланда» и лег в основу практически всех вариантов генетических алгоритмов. Однако, перед тем как мы его рассмотрим подробнее, необходимо остановится на том, каким образом объекты реального мира могут быть закодированы для использования в генетических алгоритмах.
Представление объектов.
Из биологии мы знаем, что любой организм может быть представлен своим фенотипом, который фактически определяет, чем является объект в реальном мире, и генотипом, который содержит всю информацию об объекте на уровне хромосомного набора. При этом каждый ген, то есть элемент информации генотипа, имеет свое отражение в фенотипе. Таким образом, для решения задач нам необходимо представить каждый признак объекта в форме, подходящей для использования в генетическом алгоритме. Все дальнейшее функционирование механизмов генетического алгоритма производится на уровне генотипа, позволяя обойтись без информации о внутренней структуре объекта, что и обуславливает его широкое применение в самых разных задачах.
В наиболее часто встречающейся разновидности генетического алгоритма для представления генотипа объекта применяются битовые строки. При этом каждому атрибуту объекта в фенотипе соответствует один ген в генотипе объекта. Ген представляет собой битовую строку, чаще всего фиксированной длины, которая представляет собой значение этого признака.
Кодирование признаков, представленных целыми числами
Для кодирования таких признаков можно использовать самый простой вариант – битовое значение этого признака. Тогда нам будет весьма просто использовать ген определенной длины, достаточной для представления всех возможных значений такого признака. Но, к сожалению, такое кодирование не лишено недостатков. Основной недостаток заключается в том, что соседние числа отличаются в значениях нескольких битов, так например числа 7 и 8 в битовом представлении различаются в 4-х позициях, что затрудняет функционирование генетического алгоритма и увеличивает время, необходимое для его сходимости. Для того, чтобы избежать эту проблему лучше использовать кодирование, при котором соседние числа отличаются меньшим количеством позиций, в идеале значением одного бита. Таким кодом является код Грея, который целесообразно использовать в реализации генетического алгоритма. Значения кодов Грея рассмотрены в таблице ниже:
Двоичное кодирование |
Кодирование по коду Грея Рекомендуем скачать другие рефераты по теме: культурология как наука, доклад. Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |