Нестандартные методы решения тригонометрических уравнений: графический и функциональный
Категория реферата: Рефераты по математике
Теги реферата: дипломная работа персонал, мир рефератов
Добавил(а) на сайт: Кудайбергенов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Также при использовании функционального метода рационально использовать некоторые теоремы, приведенные ниже. Для их доказательства и использования необходимы следующие уравнения общего вида:
f(x)=x (1)
(2)
Теорема 1. Корни уравнения (1) являются корнями уравнения (2).
Теорема 2. Если f(x) – возрастающая функция на интервале a<f(x)<b, то на данном интервале уравнения (1) и (2) равносильны. Если f(x) – убывающая функция на интервале a<f(x)<b, n - нечетное, то на данном интервале уравнения (1) и (2) равносильны.
Из последней теоремы вытекают следствие, также используемое в решениях:
Следствие 1. Если f(x) возрастает на всей своей области определения, то на данном интервале уравнения (1) и (2) равносильны. Если f(x) убывает на всей своей области определения, n - нечетное, то на данном интервале уравнения (1) и (2) равносильны.
Теорема 3. Если в уравнении f(x)=g(x) при любом допустимом х выполнются условия f(x)≥a, g(x)≤a, где а – некоторое действительное число, то дано уравнение равносильно системе
Следствие 2. Если в уравнении f(x)+g(x)=a+b при любом допустимом х f(x)≤a, g(x)≤b, то данное уравнение равносильно системе
Функциональный метод решения уравнений часто используется в комбинации с графическим, так как оба эти метода основаны на одних свойствах функций. Иногда комбинацию этих методов называют графоаналитическим методом.
Метод функциональной подстановки
Частным случаем функционального метода является метод функциональной подстановки – самый, пожалуй, распространенный метод решения сложных задач математики. Суть метода состоит в введении новой переменной y=ƒ(x), применение которой приводит к более простому выражению. Отдельным случаем функциональной подстановки является тригонометрическая подстановка.
Тригонометрическое уравнение вида
R(sinkx, cosnx, tgmx, ctglx) = 0 (3)
где R – рациональная функция, k,n,m,lÎZ, с помощью тригонометрических формул двойного и тройного аргумента, а также формул сложения можно свести к рациональному уравнению уравнению относительно аргументов sinx, cosx, tgx, ctgx, после чего уравнение (3) может быть сведено к рациональному уравнению относительно t=tg(x/2) c помощью формул универсальной тригонометрической подстановки
2tg(x/2) 1-tg²(x/2)
sinx= cosx=
1+tg²(x/2) 1+tg²(x/2)
(4)
2tg(x/2) 1-tg²(x/2)
tgx= ctgx=
1-tg²(x/2) 2tg(x/2)
Следует отметить, что применение формул (4) может приводить к сужению ОДЗ исходного уравнения, поскольку tg(x/2) не определен в точках x=π+2πk, kÎZ, поэтому в таких случаях нужно проверять, являются ли углы x=π+2πk, kÎZ корнями исходного уравнения.
Практикум
sinx +√2-sin²x + sinx√2-sin²x = 3
Рекомендуем скачать другие рефераты по теме: оценка курсовой работы, реферат на тему развитие.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата