Нестандартный анализ
Категория реферата: Рефераты по математике
Теги реферата: реферат підприємство, инновационная деятельность
Добавил(а) на сайт: Mavrikij.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
которую естественно назвать «гипердействительным аналогом исходной».
В качестве возможных значении переменных этой системы могут фигурировать любые гипердействительные числа. Тем самым приобретает смысл вопрос о наличии или отсутствии гипердействительных решений этой системы. Поскольку мы предполагаем, что входящие в нее функции являются продолжениями соответствующих функций действительного аргумента, то всякое (действительное) решение исходной системы будет одновременно решением новой системы. Таким образом, если исходная система имеет решения, то и ее гипердействительный аналог имеет решения. Мы потребуем и обратного:
всякая система уравнений и неравенств, гипердействительный аналог которой имеет (гипердействительные) решения, должна иметь действительные решения.
Введем понятие терма. Выберем счетный набор символов, элементы которого будем называть переменными. Будем называть термом любую переменную, любое действительное число, а также любое выражение вида f(t1, ..., tn), где f – функция п действительных аргументов, а t1, ..., tn – построенные ранее термы.
Системой (точнее, системой уравнений и неравенств) назовем конечный набор записей вида t=s или t¹s, где t, s – термы. Определим теперь понятие решения системы. Еслп в терм подставить действительные числа вместо переменных, то он приобретет некоторое действительное значение. Решение системы – это такой набор значений переменных, при котором левая и правая части любою равенства I t=s, входящего в систему, приобретают одно и то же значение, а левая и правая части любого неравенства t¹s, входящего в систему,— разные.
По нашему предположению всякая функция с действительными аргументами н значениями имеет гппердействительный аналог («естественное продолжение»). Понятие гипердействительного аналога легко распространяется на термы — чтобы получить аналог терма t, надо просто заменить все входящие в него функции на их гипердействительпые аналоги. Проделав эту операцию со всеми термами, входящими в какую-то систему S, мы получим систему *S, которую естественно также назвать гипердействительным аналогом системы S. Поскольку в нее входят функции с гипердействительными аргументами и значениями, вместо переменных можно подставлять произвольные гипердействительные числа. Гппердейст-вительным решением системы *S назовем такой набор гипердействительпых значений переменных, при которых выполнены все входящие в нее уравнения и неравенства. Теперь можно сформулировать наше требование к системе гипердействительных чисел и к гипердействительным аналогам следующим образом.
Пусть S — произвольная система уравнений и неравенств, *S – ее гипердействительный аналог. Если *S имеет (гипердействительные} решения, то S должна иметь действительные решения.
Возможность построения неархимедова упорядоченного расширения *R поля R и таких гипердействительных аналогов *f для всех действительных функций f, которые бы удовлетворяли сформулированному требованию, остается пока всего, лишь гипотезой. (Мы будем называть эту гипотезу Основной гипотезой.)
7. Следствия основной гипотезы
Приведем несколько примеров, показывающих, какие следствия можно вывести из сформулированной Основной гипотезы. Оказывается, что несмотря на то, что сформулированное нами требование одновременной разрешимости систем уравнений и неравенств кажется весьма частным, оно имеет самые разнообразные следствия и достаточно для обоснований значительной части рассуждений с ги-пердействительными числами.
Пример 1. Пусть f – функция одного действительного аргумента, принимающая только значения 0 и 1. Докажем, что функция *f принимает только значения 0 и 1. Для этого рассмотрим систему
f(x)¹0, f(x)¹1,
которая по предположению не имеет действительных решений. Следовательно, не имеет (гипердействительных) решений и ее аналог — система
*f(x)¹0, *f(x)¹1,
Пример 2. Пусть f и g – функции одного действительного аргумента, причем множества их нулей совпадают. (Множество нулей функции – множество тех зна-чений аргумента, при которых значение функции равно 0) В этом случае и множества гипердействительных чисел, являющиеся множествами нулей функций *f и *g, совпадают. Докажем это. В самом деле, каждая из систем
(1) f(x)=0, g(x)¹0,
(2) g(x)=0, f(x)¹0,
не имеет действительных решений. Следовательно, не имеют гииердействительных решений и их аналоги. Потому любой гипердействительный нуль функции *f обя-зан (чтобы не быть решением аналога системы (1)) быть нулем и для *g и наоборот.
Этот пример позволяет определить гипердействительные аналоги не только для функций, но и для множеств.
Пусть А – произвольное множество действительных чисел. Рассмотрим произвольную функцию f, для которой А – множество нулей. (Такая есть: достаточно положить, например, f(x)=0 при хÎА и f(x)=1 при xÏA). Рассмотрим теперь гипердействительный аналог *f функции f и множество *А его (гипердействительных) нулей. Как мы видим, множество *А не зависит от выбора функции f. Его мы и назовем гипердействительным аналогом множества А.
Пример 3. Мы можем теперь разрешить включать системы наряду с равенствами t=s и неравенствами t¹s и записи вида sÎA, где s представляет собой терм, а А – множество действительных чисел. При этом решениями будут такие наборы (действительных или гипердействительных) значений переменных, при которых выполнены все равенства и неравенства, а значение s принадлежит множеству А. Гипердействительным аналогом sÎA будет *sÎ*A, где *s – гипердей-ствительный аналог терма s, а *A — аналог множества А (в указанном смысле). Таким образом, у всякой системы равенств, неравенств и включений (т. е. записей вида sÎA) появляется гипердействительный аналог. Для таких систем остается в силе свойство одновременной разрешимости: если гипердействительный аналог системы имеет (гипердействительные) решения, то исходная система имеет (действительные) решения. Чтобы увидеть это, достаточно заменить sÎA на a(s)=0, где a – функция с действительными аргументами и значениями, множеством нулей которой является A. Аналогичным образом можно добавлять в систему и утверждения вида sÏA (что заменяется на a(s)¹0).
Пример 4. Пусть А – пустое множество. Докажем, что *A – пустое множество.
В самом деле, система
хÎА
не имеет действительных решений, поэтому и система хÎ*А не имеет (гипердействительных) решений. Рассмотрев систему хÏА, получаем аналогичным образом, что если А содержит все действительные числа, то *А содержит все гипердействительные числа. Таким образом, гипердействительным аналогом множества R будет множество *R, так что наши обозначения согласованы.
Вдальнейшем, вместо того чтобы говорить о системе S и ее действительных решениях, а также о системе *S и ее гипердействительных решениях, будем говорить о действительных и гипердействительных решениях системы S (говоря о гипердойствительных решениях системы S, мы на самом деле будем иметь в виду гипердействительные решения системы *S).
Рекомендуем скачать другие рефераты по теме: изложение материала, решебник 11 класс.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата