
О физической значимости векторных потенциалов в классической электродинамике
Категория реферата: Рефераты по математике
Теги реферата: реферат экспертиза, решебник по геометрии класс атанасян
Добавил(а) на сайт: Маина.
1 2 3 4 | Следующая страница реферата
О физической значимости векторных потенциалов в классической электродинамике
В.В. Сидоренков
Общепринято считать, что явления электромагнетизма физически полно представлены векторными электромагнитными полями, свойства которых исчерпывающе описываются системой электродинамических уравнений, сформулированных в окончательной форме Максвеллом [1]. При этом непосредственно следующие из уравнений Максвелла векторные потенциалы указанных полей как физическая реальность не рассматриваются, и им отводится роль вспомогательных математических функций, в ряде случаев существенно упрощающих вычисления. Такой взгляд на векторные потенциалы обусловлен взаимно неоднозначной связью полей и их потенциалов, не допускающей прямых измерений последних, и, что еще более важно, использование векторных потенциалов в рамках электромагнитных уравнений Максвелла не приводит в явном виде к дополнительным, не известным прежде следствиям.
Однако к настоящему времени исследованиями в области электродинамики, квантовой механики, сверхпроводимости достоверно установлено, что в фундаментальных уравнениях должны фигурировать не поля, а именно их потенциалы. В частности, эффекты Ааронова-Бома, Джозефсона, Мейснера реализуются в поле магнитного векторного потенциала [2], проявляющего себя тем самым вполне наблюдаемой физической величиной. Известно предложение о применении поля указанного вектор-потенциала в технологиях обработки разного рода материалов [3]. Отметим также сообщение [4], где на основе формального использования представлений о векторных потенциалах металлического проводника с током сделано утверждение о том, что в проводник при электропроводности вместе с потоком вектора электромагнитной энергии Пойнтинга поступают потоки чисто электрической и чисто магнитной энергии, момента электромагнитного импульса, возникающие в таких условиях в электромагнитном поле. Таким образом, налицо серьезная проблема, для решения которой необходимо должным образом проанализировать известные либо сформулировать новые физические представления о роли и месте векторных потенциалов в явлениях электромагнетизма.
В настоящей работе проведена модификация уравнений электромагнитного поля Максвелла для электрического и магнитного векторных потенциалов, и на основе анализа физического содержания полученных уравнений показано, что, наряду с традиционными полями в электродинамике, их векторные потенциалы являются полноправными физически значимыми полями, существенно расширяющими представления об электромагнитных полевых процессах.
Для решения поставленной задачи, прежде всего, рассмотрим саму систему электродинамических уравнений Максвелла [5] в дифференциальной форме:
(a) rot, (b) div
, (c) rot
, (d) div
, (1)
включающую в себя материальные соотношения:
,
,
, (2)
описывающие отклик среды на наличие в ней электромагнитных
полей. Здесь и
- векторы напряженности
электрического и магнитного полей, связанные посредством соотношений (2) с
соответствующими векторами индукции
и
,
- вектор плотности
электрического тока, ρ - объемная плотность стороннего заряда, ε0 и μ0
- электрическая и магнитная постоянные, σ, ε и μ - удельная
электрическая проводимость и относительные диэлектрическая и магнитная
проницаемость среды, соответственно. Принципиальная особенность этих динамических
релятивистски инвариантных уравнений (1) состоит в том, что в их структуре
заложена отражающая обобщение опытных данных основная аксиома классической
электродинамики - неразрывное единство переменных во времени электрического и
магнитного полей.
Фундаментальным следствием уравнений Максвелла
является вывод о том, что описываемое ими электромагнитное поле перемещается в
пространстве в виде волн, скорость которых определяется лишь электрическими и
магнитными параметрами среды, заполняющей это пространство (например, в отсутствие
поглощения ). Совместное решение уравнений системы (1) позволяет также
ответить на вопрос, что переносят эти волны и получить аналитическую
формулировку закона сохранения электромагнитной энергии:
rot
rot
=div
=
, (3)
согласно которому поток электромагнитной энергии
компенсирует в данной точке среды джоулевы (тепловые) потери при
электропроводности и изменяет электрическую и магнитную энергию. При этом
характеризующий энергетику данного факта вектор Пойнтинга плотности потока
электромагнитной энергии , связанный с вектором плотности электромагнитного импульса
2, отличен от нуля только там, где одновременно присутствуют
электрическое и магнитное поля, векторы
и
которых неколлинеарны.
Таким образом, в рамках уравнений (1) в принципе невозможно представить раздельное существование чисто электрических либо магнитных волн, переносящих только электрическую или магнитную энергию. Кроме того, далеко не ясен вопрос о физической реализации момента импульса электромагнитного поля, соответственно, переносящих его волн, и каким образом это явление соотносится с уравнениями Максвелла [6]. Чтобы аргументированно прояснить сложившуюся ситуацию, рассмотрим далее вопрос о возможности модификации уравнений электромагнитного поля (1) в виде альтернативных им уравнений для электрического и магнитного векторных потенциалов.
Понятие векторного потенциала следует из очевидного
положения о том, что дивергенция ротора любого вектора тождественно равна нулю.
Поэтому магнитный векторный потенциал определится посредством
соотношения div
= 0 системы электромагнитных уравнений Максвелла (1), а
электрический
- соотношением div
= ρ этой системы при
, описывающим поляризацию локально электронейтральной среды:
(а) rot
, (b)
rot
. (4)
Однозначность функций векторного потенциала, то есть
чисто вихревой характер такого поля, обеспечивается условием кулоновской
калибровки: div = 0.
Тогда подстановка соотношения для магнитного векторного потенциала (4a) в уравнение вихря электрической напряженности системы (1a) приводит к известной формуле [5] связи поля вектора указанной напряженности с магнитным вектор-потенциалом:
, (5)
описывающей закон электромагнитной индукции Фарадея.
Отметим, что здесь не рассматривается электрический скалярный потенциал, формально
следующий из таких рассуждений: grad φe.
Аналогичная подстановка соотношения для электрического векторного потенциала (4b) в уравнение вихря магнитной напряженности системы (1c) с учетом соотношений (2) позволяет получить формулу связи поля этой напряженности с электрическим вектор-потенциалом:
, (6)
где τрел= εε0 /σ - постоянная времени релаксации электрического заряда в среде за счет электропроводности.
Теперь можно убедиться, что результаты проведенных рассуждений действительно позволяют предложить альтернативу традиционной системе электромагнитных уравнений Максвелла (1). Используя формулы (4a) и (4b) связи полей индукции и их векторных потенциалов, имеем при подстановке в них соотношений (5) и (6) систему динамических уравнений относительно полей только электрического и магнитного векторных потенциалов:
(a) rot, (b) div
, (7)
(c) rot, (d) div
.
Рекомендуем скачать другие рефераты по теме: человек изложение, ответы 9 класс.
1 2 3 4 | Следующая страница реферата