Оценки волновых векторов, задача согласования и оптимизация систем дипольных решеток
Категория реферата: Рефераты по математике
Теги реферата: конспекты по истории, сочинение
Добавил(а) на сайт: Карданов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Получим явные выражения для f, градиента и матрицы Гессе .
Находя частные производные по , получим
Матрица Гессе, элементы которой имеют вид:
Рассмотрим СДР с минимально возможным количеством дипольных подрешеток (для плоской СДР L=3, для объемной - L=4).
Для случая L=3 (плоская СДР) положим . Линии равного уровня f изображены на рис. 1. Используя (13), запишем систему уравнений в виде
Из всех решений системы
Рис. 1 Целевая функция f (L=3) в квадрате |
существует одно нетривиальное решение: , , , остальные получаются применением свойств , , .
Проверим, что в данной точке .
с собственными числами . Так как собственные числа отрицательны, то матрица Гессе отрицательно определена. Таким образом, представленные решения являются точками строгих глобальных максимумов. В частности, также следует, что гексогональные кольцевые решетки оптимальны в смысле минимума целевой функции (10).
Для объемной СДР (n=3) численная оптимизация методом циклического покоординатного спуска [] для L=4 (с точностью до машинного нуля) приводит к конфигурации векторов hi, образующих правильный тетраэдр, то есть решение задается равенствами: (в силу свойства ) , . Вторая конфигурация, к которой сходился алгоритм, получается из первой путем изменения направления какого-либо одного из порождающих векторов. Аналитические вычисления показывают, что градиент в данной точке равен нулю, а матрица Гессе равна:
Характеристический многочлен матрицы имеет вид
Рекомендуем скачать другие рефераты по теме: жизнь реферат, реферат по физкультуре.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата