План чтения лекции по учебной дисциплине «Математические методы»
Категория реферата: Рефераты по математике
Теги реферата: шпори психологія, сестринские рефераты
Добавил(а) на сайт: Jeshman.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
…………………………... am1 x1+am2 x2+…+amn xn=bm
и обращающие в максимум линейную функцию этих переменных:
[pic] (7.2.)
Для простоты предположим, что все условия (7.1.) линейно независимы
(r=m), и будем вести рассуждения в этом предположении.
Назовём ДОПУСТИМЫМ решением ОЗЛП всякую совокупность неотрицательных
значений x1, x2, …, xn, удовлетворяющую условиям (7.1.).
ОПТИМАЛЬНЫМ назовём то из допустимых решений, которое обращает в максимум
функцию (7.2.).
Требуется найти оптимальное решение. Всегда ли эта задача имеет решение?
Нет, не всегда.
1. Может оказаться, что уравнения (7.1.) вообще несовместимы (противоречат друг другу).
2. Может оказаться и так, что они совместимы, но не в области неотрицательных решений, т.е. не существует ни одной совокупности чисел x1(0, x2(0, …, xn(0, удовлетворяющей условиям (7.1.).
3. Наконец, может быть и так, что допустимые решения ОЗЛП существуют, но среди них нет оптимального: функция L в области допустимых решений не ограничена сверху.
[pic]
Чтобы представить себе принципиальную сторону ОЗЛП, обратимся к геометрической интерпретации. Пусть число уравнений m на два меньше числа переменных n (n-m=k=2). Такой частный случай даёт возможность геометрической интерпретации ОЗЛП на плоскости.
Мы знаем, что n линейно независимых уравнений (7.1.) всегда можно
разрешить относительно каких-то m базисных переменных, выразив их через
остальные, свободные, число которых равно n-m=k (в нашем случае k=2).
Предположим, что свободные переменные – это x1 и x2 (если это не так, то
всегда можно заново перенумеровать переменные), а остальные: x3, x4, …, xn
– базисные. Тогда вместо m уравнений (7.1.) мы получим тоже m уравнений, но
записанных в другой форме, разрешённых относительно x3, x4, …; x3=a31 x1+a32 x2+(3, x4=a41 x1+a42 x2+(4, (7.3.)
…………………… xn=an1 x1+an2 x2+(n.
Будем изображать пару значений свободных переменных точкой с координатами x1, x2 (рис. 9.1.). Так как переменные x1, x2 должны быть неотрицательными, то допустимые значения свободных переменных лежат только выше оси Ox1 (на которой x2=0) и правее оси Ox2 (на которой x1=0). Это мы отметим штриховкой, обозначающей «допустимую» сторону каждой оси.
Теперь построим на плоскости x1Ox2 область допустимых решений или же
убедимся, что её не существует. Базисные переменные x3, x4, …, xn тоже
должны быть неотрицательными и удовлетворять уравнениям (7.3.). Каждое
такое уравнение ограничивает область допустимых решений.
[pic]
Действительно, положим в первом уравнении (7.3.) x3=0; получим уравнение прямой линии:
[pic]
На этой прямой x3=0; по одну сторону от неё x3>0, по другую – x30 (рис. 7.2.). Пусть
эта сторона оказалась правее и выше прямой x3=0. Значит, вся область
допустимых решений (ОДР) лежит в первом координатном угле, правее и выше
прямой x3=0. Аналогично поступим и со всеми остальными условиями (7.3.).
Каждое из них изобразится прямой со штриховкой, указывающей «допустимую»
полуплоскость, где только и может лежать решение (рис.7.3.).
[pic]
Таким образом, мы построили n прямых: две оси координат (Ox1 и Ox2) и
n-2 прямых x3=0, x4=0, …, xn=0. Каждая из них определяет «допустимую»
полуплоскость, где может лежать решение. Часть первого координатного угла, принадлежащая одновременно всем этим полуплоскостям, и есть ОДР. На рис.
7.3. показан случай, когда ОДР существует, т.е. система уравнений (7.3.)
имеет неотрицательные решения. Заметим, что этих решений – бесконечное
множество, так как любая пара значений свободных переменных, взятая из ОДР,
«годится», а из x1 и x2 могут быть определены и базисные переменные.
[pic]
Может оказаться, что область допустимых решений не существует, и
значит, уравнения (7.3.) несовместимы в области неотрицательных значений.
Такой случай показан на рис. 7.4., где нет области, лежащей одновременно по
«нужную» сторону от всех прямых. Значит, ОЗЛП не имеет решения.
Предположим, что область допустимых решений существует, и мы её построили. Как же теперь найти среди них оптимальное?
Для этого дадим геометрическую интерпретацию условию (7.2.) L(max.
Подставив выражения (7.3.) в формулу (7.2.), выразим L через свободные
переменные x1, x2. после приведения подобных членов получим:
[pic] (7.4.)
где (1, (2 – какие-то коэффициенты, (0 – свободный член, которого в первоначальном виде у функции L не было; теперь, при переходе к переменным x1, x2, он мог и появится. Однако мы его тут же и отбросим: ведь максимум линейной функции L достигается при тех же значениях x1, x2, что и максимум однородной линейной функции (без свободного члена):
[pic] (7.5.)
Посмотрим, как изобразить геометрически условие L’(max. Положим
сначала L’=0, т.е. [pic]и построим на плоскости x1Ox2 прямую с таким
уравнением; очевидно, она проходит через начало координат (рис. 7.5.)
[pic]
Назовём её «опорной прямой». Если мы будем придавать L’ какие-то значения
C1, C2, C3, …, прямая будет перемещаться параллельно самой себе; при
перемещении в одну сторону L’ будет возрастать, в другую – убывать. Отметим
на рис. 7.5. стрелками, поставленными у опорной рамой, то направление, в
котором L’ возрастает. На рис. 7.5. это оказалось направление «направо -
вверх», но могло быть и наоборот: всё зависит от коэффициентов (1, (2.
теперь изобразим опорную прямую и ОДР на одном чертеже (7.6.). Давайте
будем мысленно двигать опорную прямую параллельно самой себе в направлении
стрелок (возрастания L’). Когда L’ достигнет максимума? Очевидно, в точке A
(крайней точке ОДР в направлении стрелок). В этой точке свободные
переменные принимают оптимальные значения x1*,x2*, а из них можно по
формулам (7.3.) найти и оптимальные значения всех остальных (базисных)
переменных x3*, x4*, …, xn*. Заметим, что максимум L’ достигается в одной
из вершин ОДР, где, по крайней мере, две из базисных переменных (в нашем
случае это x3 и x5) обращаются в нуль. Могло бы обращаться в нуль и больше
базисных переменных, если бы через точку А проходило более двух прямых
xi=0.
[pic]
А может ли оказаться, что оптимального решения не существует? Да, может, если в ОДР функция L’ (а значит и L) не ограничена сверху. Пример
такого ненормального случая показан на рис. 7.7. (в разумно поставленных
задачах обычно такого недоразумения не возникает).
[pic]
На рис. 7.6. оптимальное решение существовало и было единственным. А
сейчас рассмотрим случай, когда оптимальное решение существует, но не
единственно (их бесконечное множество). Это случай, когда максимум L’
достигается не в одной точке А, а на целом отрезке АВ, параллельном опорной
прямой (рис. 7.8.).
[pic]
Рекомендуем скачать другие рефераты по теме: доклад, сочинение.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата