Поиск клик в графах
Категория реферата: Рефераты по математике
Теги реферата: конспекты 9 класс, образ сочинение
Добавил(а) на сайт: Stefanija.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Гх3=0
Z=X x Y={x1 y1, x1y2, x2y1, x2y2, x3y1, x3y2}
Z={z1 z2 z3 z4 z5 z6}
Рис 2.3
7. Расширение графа.
Расширение графа - это превращение, линии, соединяющей любые две вершины графа в элементарный путь введением новых промежуточных вершин на этой линии.
8. Сжатие графа.
Сжатие графа - это превращение элементарного пути, соединяющего две любые вершины графа, в линию.
9. Стягивание графа.
Если граф содержит вершины Х1 и Y1 , то операцией стягивания называется исключение всех дуг между вершинами Х1 и Y1 и превращение всех вершин в одну общую вершину Х.
Некоторые числа теории графов
Пусть существует мультиграф с b вершинами, p ребрами, и R компонентами связности, тогда цикломатическое число мультиграфа определяется равенством:
V= p-b+R
Матрицы для графов
Матрицей смежности графа G(X,Гх), содержащего n вершин называется квадратная бинарная матрица А(G) n x n , c нулями на диагонали. Число единиц в строке равно степени соответствующей вершины.
Матрицей инциденций ориентированного графа G(X,U) называется прямоугольная матрица порядка [m x n] n - мощность множества Х, m - мощность множества U. Каждый элемент которой определяется следующим образом:
1, если хi - начало дуги Uj
aij = -1, если хi - конец дуги Uj
0, если хi - не инцидентна дуге Uj
Пример.
Построим матрицы смежности (М1) и инциденций (М2) для графа G(X,U) (рис 2.1).
Рис 2.1
Дополнительная матрица графа G(X,U) представляет собой квадратную матрицу А1 , которая получается из матрицы смежности этого графа путем замены всех нулей единицами и наоборот.
Деревья и прадеревья
Деревом называется неориентированный связный граф с числом вершин не менее двух, не содержащий петель и циклов. Вершины, инцидентные только одной дуге дерева, называются висячими.
Рекомендуем скачать другие рефераты по теме: рассказы, древняя греция реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата