Поверхности второго порядка
Категория реферата: Рефераты по математике
Теги реферата: решебник по математике 6, реферат синдром
Добавил(а) на сайт: Богров.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
2. Классификация нецентральных поверхностей второго порядка.
Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид aґ11хґ2 + аґ22уґ2 + aґ33zґ2 + 2аґ14 xґ + 2аґ24уґ+2аґ34zґ +аґ44 = 0
(7) для системы координат Oxґyґzґ
Так как инвариант I3 = 0 и его значение, вычисленное для уравнения (7) , равно
aґ11 • аґ22 • aґ33 , то один или два из коэффициентов aґ11 , аґ22 , aґ33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.
( 1°. Один из коэффициентов aґ11 , аґ22 , aґ33 равен нулю. Ради
определенности будем считать, что aґ33 = 0 (если равен нулю какой-либо
другой из указанных коэффициентов, то можно перейти к рассматриваемому
случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам
Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем aґ11 на a11 , аґ22 на а22 , аґ34 на p и аґ44 на q , получим следующее уравнение поверхности S в новой системе координат Oxyz :
a11х2 + а22у2 + 2pz + q = 0 (9)
1) Пусть р = 0, q = 0. Поверхность S распадается на пару плоскостей
При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22
одинаковы, и вещественными, если знаки a11 и а22 различны.
2) Пусть р = 0, q ? 0. Уравнение (9) принимает вид
a11х2 + а22у2 + q = 0 (10)
Известно, что уравнение (10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, a q — противоположный, то величины
положительны.
Обозначая их соответственно через а2 и b2, мы приведем уравнение (10) к
виду
Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду
3) Пусть р?0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами
(0, 0, ).
При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверхности S в новой системе координат, достаточно заменить в уравнении (9)
Получим следующее уравнение:
a11х2 + а22у2 + 2pz = 0 (13)
Уравнение (13) определяет так называемые параболоиды. Причем если a11 и
а22 имеют одинаковый знак, то параболоид называется эллиптическим. Обычно
уравнение эллиптического параболоида записывают в канонической форме:
Уравнение (14) легко получается из (13). Если a11 и а22 имеют разные знаки, то параболоид называется гиперболическим. Каноническое уравнение гиперболического параболоида имеет вид
Это уравнение также легко может быть получено из (13).
( 2°. Два из коэффициентов aґ11 , аґ22 , aґ33 равны нулю. Ради
определенности будем считать, что aґ11 = 0 и аґ22 = 0 Перейдем от
х,', у', z' к. новым координатам х, у, z по формулам :
Подставляя х', у' и z' , найденные из (16) в левую часть (7) и заменяя
затем aґ33 на a33 , aґ14 на р , aґ24 на q и aґ44 на r
, получим следующее уравнение поверхности S в новой системе координат Охуz
:
a33 z2 + 2px + 2qy + r = 0 (17)
1) Пусть р=0, q=0. Поверхность S распадается на пару параллельных
плоскостей
При этом, очевидно, эти плоскости будут мнимыми, если знаки a33 и r
одинаковы, и вещественными, если знаки a33 и r различны, причем при r = 0
эти плоскости сливаются в одну.
2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид
a33 z2 + 2qґy = 0 (19)
Рекомендуем скачать другие рефераты по теме: оформление доклада, персонал диплом.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата