Радиационный пояс Земли
Категория реферата: Рефераты по математике
Теги реферата: контрольные работы, реферат ?аза?ша
Добавил(а) на сайт: Wetkin.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
(3) |
(4) |
Ограничения (3) и (4) удовлетворяют условиям адиабатичности. При их выполнении задача о движении заряженной частицы в магнитном поле решается просто, а величины Rл и Tл определяются достаточно точно. Например, для электрона и протона с энергией 10 МэВ ларморовские радиусы составляют соответственно 12,2 и 118 км, а периоды их вращения ~10-6 и ~10-3 с. Конечно, ларморовский радиус частиц должен быть гораздо меньше радиуса Земли. Это нужно для выполнения условий адиабатичности (для чего достаточно соотношения Rл/Rз 0,1). Есть и еще одно ограничение:Rл должен быть достаточно малым, чтобы частица при своем вращении не задевала плотных слоев атмосферы, граница которой находится на высоте ~100 км.
Рассмотрим теперь поступательное движение. Двигаясь по инерции вдоль магнитной силовой линии дипольного поля, частица приближается к Северному или Южному магнитному полюсу, причем напряженность поля сильно увеличивается. На частицу действует сила нарастающая по мере приближения к полюсу (Br - радиальная составляющая магнитного поля). Она замедляет поступательное движение частицы к полюсу до полной остановки, после чего заставляет частицу двигаться с ускорением к противоположному полюсу. Точку, где движение частицы вдоль магнитной силовой линии изменяет направление на обратное, называют зеркальной точкой. Для электронов и протонов с энергией 10 МэВ периоды колебаний между парой зеркальных точек РПЗ составляют секунду и десятую долю секунды соответственно.
Помимо этих двух видов движения захваченной частицы существует и третий. В дипольном магнитном поле нельзя полностью выполнить условие адиабатичности (3), особенно для захваченных частиц с высокими энергиями. Действительно, когда частица совершает один оборот вокруг магнитной силовой линии, она пересекает области с разной напряженностью магнитного поля: оно больше на внутренней части ларморовской окружности, чем на внешней. Следовательно, и ларморовский радиус меньше на внутренней части, чем на внешней. По этой причине частица, совершив полный оборот, промахивается мимо исходной точки, так что ведущий центр смещается к западу в случае положительного заряда частицы или к востоку в случае отрицательного. Смещение будет происходить и на последующих витках. Так возникает третий вид движения - долготный дрейф. Частица оборачивается вокруг Земли именно из-за долготного дрейфа: период обращения обратно пропорционален энергии частицы. Для электронов и протонов с энергией ~10 МэВ этот период равен приблизительно двум минутам и нескольким десяткам секунд соответственно.
2. При движении заряженной частицы в дипольном магнитном поле возникают два так называемых адиабатических инварианта движения.
Первый инвариант. Ларморовское вращение частицы приводит к сохранению магнитного момента , где - ток частиц, - частота ларморовского вращения и e - заряд частицы. Учитывая (2), получаем выражение
(5) |
Если частицы не подвергаются торможению, а поле стационарно, то const. Таким образом, и есть первый адиабатический инвариант - сохраняющаяся величина в процессе движения захваченной частицы. В каждый момент времени магнитный момент направлен по касательной к магнитной силовой линии, следуя за всеми ее изгибами. Иными словами, ведущий центр обладает магнитным моментом и движется вдоль магнитной силовой линии. Поскольку изменяется вдоль магнитной силовой линии, то соответственно поменяется и питч-угол. При некотором значении напряженности магнитного поля станет равным единице. Значит, в соответствующей точке скорость частицы перпендикулярна к и дальнейшее продвижение вдоль силовой линии к полюсу прекращается. Это и есть математическое определение зеркальной точки. После остановки в зеркальной точке тотчас же начинается обратное спиральное движение частицы к противоположному полюсу. Из выражения (5) следует, что если на магнитном экваторе частица имела питч-угол определенной величины, то ему соответствует значение поля Bз , при котором произойдет зеркальное отражение. Используя выражения (1) и (2), можно установить, на какой географической широте поле становится равным расчетной величине Bз .
В стационарных условиях осцилляции могли бы продолжаться бесконечно, но захваченные частицы непрерывно растрачивают энергию на ионизацию остаточной атмосферы, синхротронное излучение (электроны) и на рассеяние на электромагнитных волнах. Все это приводит к потере скорости и изменению питч-угла частиц, что сильно влияет на условия их движения. Особенно критичной оказывается высота зеркальных точек. Если она выше условной верхней границы атмосферы, то ионизационные потери пренебрежимо малы и число осцилляций велико. Если при долготном дрейфе зеркальные точки нигде не опускаются ниже 100 км, то частица обойдет Землю без каких-либо последствий. Для частиц с нулевым питч-углом на магнитном экваторе зеркальных точек нет: они проникают в плотные слои атмосферы, достигают поверхности Земли, где погибают.
Второй адиабатический инвариант (долготный). Интеграл действия J при осцилляциях между северной Зс и южной Зю зеркальными точками
где - составляющая импульса вдоль магнитной силовой линии, а ds - элемент пути. Учитывая, что в зеркальной точке sin2 = 1/Bз , находим, что В магнитном поле p = const и
Введем величину
Если за время каждой осцилляции частицы между двумя зеркальными точками значение I сохраняется и частица совершает при этом долготный дрейф, то можно считать, что она все время находится на вполне определенных силовых линиях. Совокупность этих силовых линий составляет поверхность (рис. 3) и называется оболочкой. Оболочка напоминает замкнутый выпуклый пояс, где верхний и нижний края - это множество широт расположения зеркальных точек. Края пояса, его выпуклость или вогнутость зависят уже от реальной конфигурации дипольного магнитного поля Земли. Пояс для конкретной частицы имеет толщину, определяемую ее ларморовским радиусом. Захваченные частицы отличаются импульсами, питч-углами и т.п. и каждая имеет свой пояс. Все вместе они образуют РПЗ.
Рис. 3. Меридиональное сечение радиационного пояса Земли. Оболочки L = 1-3 - внутренняя часть пояса; L = 3,5-7 - внешняя часть; L = 1,2-1,5 - стабильный пояс высокоэнергетичных электронов (см. раздел 3.1); L ~ 2 - стабильный пояс ядер аномальной компоненты космических лучей (см. раздел 3.2); L ~ 2,6 - квазистабильный пояс (см. раздел 3.3). |
2.3. Пространственное и энергетическое распределения захваченных частиц в радиационном поясе Земли
В магнитном поле Земли одна и та же оболочка на разных долготах отстоит на различном расстоянии от поверхности Земли из-за несовпадения оси вращения с осью магнитного поля. Этот эффект наиболее заметен над Бразильской магнитной аномалией, где магнитные силовые линии опускаются и движущиеся по ним захваченные частицы рискуют оказаться ниже высоты 100 км и погибнуть в атмосфере Земли.
Распределение электронов и протонов внутри пояса неодинаково. В частности, из рис. 4 видно, что протоны располагаются во внутренней части пояса, а электроны - во внешней. Поэтому при открытии и на раннем этапе исследования радиационного пояса считалось, что поясов два: внутренний - протонный и внешний - электронный.
Рекомендуем скачать другие рефераты по теме: банки рефератов, где диплом.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата