Распределение Гаусса. Центральная предельная теорема теории вероятностей. Распределения Пирсона и Стьюдента
Категория реферата: Рефераты по математике
Теги реферата: международное право реферат, сообщение
Добавил(а) на сайт: Rozhdestvenskij.
1
Распределение Гаусса. Центральная предельная теорема теории вероятностей. Распределения Пирсона и Стьюдента.
С.В. Усатиков, кандидат физ-мат наук, доцент; С.П. Грушевский, кандидат физ-мат наук, доцент; М.М. Кириченко, кандидат социологических наук
Впервые нормальный закон был обнаружен в Х1Х веке в применении к теории ошибок измерения Лапласом и Гаусcом. Сейчас, после доказанной Ляпуповым центральной предельной теоремы, стало уже ясным, почему этот нормальный закон широко распространен в технике, биологии, социологии, психологии и многих других сферах человеческих знаний. Все его содержание показано на рисунке 1, на графике плотности распределения вероятностей.
Рис.1
Рис.1 Плотность распределения вероятностей нормального закона
1,2 - графики с одним средним m и разными стандартными отклонениями s , причем s 130) закон c 2 превращается в нормальный закон с m = n и s =, поскольку действует теорема Ляпунова. Но чаще всего слагаемых не более 10. Число n называеся числом степеней свободы. Смысл f(x) такой же, как и в нормальном законе: вероятность числовой величине х=c 2 попасть в заданный диапазон равна площади под кривой f(x). Так, площадь под кривой на отрезке от 0 до n + составляет более 90% всей площади под всей кривой f(x). Отсюда следут правило “трех s “ для закона c 2: с вероятностью рі 0,9 случайная величина х=c 2 не превосходит величины n +Ц 2n (очевидно, c 2 не может быть отрицательным).
Наконец, необходимо упомянуть закон t Стьюдента, полученный из нормального закона и законаc 2. Случайная величина t получается из дроби в числителе которой стоит случайная величина Z Гаусса с m=0 и s =1, а в знаменателе - случайная величина c 2 с n степенями свободы. По -прежнему при больших n закон Стьюдента переходит в нормальный закон (практически при n і 30). Но даже при небольших n вид кривой плотности распределения вероятностей для t очень похож на кривую 3 рис.1. Разница в том, что вместо s =1 для Z необходимо брать s =n /(n -2), т.е.среднее отклонение t от m=0 больше, чем среднее отклонение Z от m=0. Соответственно “холм” закона t более пологий, чем “холм” закона Z.
Скачали данный реферат: Ячевский, Мосалев, Митродора, Lira, Milana, Lavlinskij.
Последние просмотренные рефераты на тему: франция реферат, реферат по социологии, конспект, конспект урока по русскому.
1