Решение смешанной задачи для уравнения гиперболического типа методом сеток
Категория реферата: Рефераты по математике
Теги реферата: функция реферат, дипломная работа разработка
Добавил(а) на сайт: Геронтий.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Рассмотрим смешанную задачу для волнового уравнения ( ¶ 2 u/ ¶ t2) = c 2 * ( ¶ 2u/ ¶ x2) (1). Задача состоит в отыскании функции u(x,t) удовлетворяющей данному уравнению при 0 < x начальным условиям u(x,0) = f(x), ¶ u(x,0)/ ¶ t = g(x) , 0 £ x £ a и нулевыми краевыми условиями u(0,t) = u(1,t)=0.
Так как замена переменных t ® ct приводит уравнение (1) к виду ( ¶ 2 u/ ¶ t2) = ( ¶ 2u/ ¶ x2), то в дальнейшем будем считать с = 1.
Для построения разностной схемы решения задачи строим в области D = сетку xi = ih, i=0,1 ... n , a = h * n, tj = j* t t t , j = 0,1 ... , m, t m = T и аппроксимируем уравнение (1) в каждом внутреннем узле сетки на шаблоне типа “крест”.
Используя для аппроксимации частных производных центральные разностные производные, получаем следующую разностную аппроксимацию уравнения (1) .
(4)
Здесь uij - приближенное значение функции u(x,t) в узле (xi,tj).
Полагая, что l = t / h , получаем трехслойную разностную схему
ui,j+1 = 2(1- l 2 )ui,j + l 2 (ui+1,j- ui-1,j) - ui,j-1 , i = 1,2 ... n. (5)
Для простоты в данной лабораторной работе заданы нулевые граничные условия, т.е. m 1(t) º 0, m 2(t) º 0. Значит, в схеме (5) u0,j= 0, unj=0 для всех j. Схема (5) называется трехслойной на трех временных слоях с номерами j-1, j , j+1. Схема (5) явная, т.е. позволяет в явном виде выразить ui,j через значения u с предыдущих двух слоев.
Численное решение задачи состоит в вычислении приближенных значений ui,j решения u(x,t) в узлах (xi,tj) при i =1, ... n, j=1,2, ... ,m . Алгоритм решения основан на том, что решение на каждом следующем слое ( j = 2,3,4, ... n) можно получить пересчетом решений с двух предыдущих слоев ( j=0,1,2, ... , n-1) по формуле (5). На нулевом временном слое (j=0) решение известно из начального условия ui0 = f(xi).
Для вычисления решения на первом слое (j=1) в данной лабораторной работе принят простейший способ, состоящий в том, что если положить ¶ u(x,0)/ ¶ t » ( u( x, t ) - u(x,0) )/ t (6) , то ui1=ui0+ + t (xi), i=1,2, ... n. Теперь для вычисления решений на следующих слоях можно применять формулу (5). Решение на каждом следующем слое получается пересчетом решений с двух предыдущих слоев по формуле (5).
Описанная выше схема аппроксимирует задачу с точностью до О( t +h2). Невысокий порядок аппроксимации по t объясняется использованием слишком грубой аппроксимации для производной по е в формуле (6).
Схема устойчива, если выполнено условие Куранта t < h. Это означает, что малые погрешности, возникающие, например, при вычислении решения на первом слое, не будут неограниченно возрастать при переходе к каждому новому временному слою. При выполнении условий Куранта схема обладает равномерной сходимостью, т.е. при h ® 0 решение разностной задачи равномерно стремится к регшению исходной смешанной задачи.
Недостаток схемы в том, что как только выбраная величина шага сетки h в направлении x , появляется ограничение на величину шага t по переменной t . Если необходимо произвести вычисление для большого значения величины T , то может потребоваться большое количество шагов по переменной t. Указанный гнедостаток характерен для всех явных разностных схем.
Для оценки погрешности решения обычно прибегают к методам сгущения сетки.
Для решения смешанной задачи для волнового уравнения по явной разностной схеме (5) предназначена часть программы, обозначенная Subroutine GIP3 Begn ... End . Данная подпрограмма вычисляет решение на каждом слое по значениям решения с двух предыдущих слоев.
Входные параметры :
hx - шаг сетки h по переменной х;
ht - шаг сетки t по переменной t;
k - количество узлов сетки по x, a = hn;
u1 - массив из k действительных чисел, содержащий значение решений на ( j - 1 ) временном слое, j = 1, 2, ... ;
u2 - массив из n действительных чисел, содержащий значение решений на j - м временном слое, j = 1, 2, ... ;
u3 - рабочий массив из k действительных чисел.
Выходные параметры :
u1 - массив из n действительных чисел, содержащий значение решения из j - м временном слое, j = 1, 2, ... ;
Рекомендуем скачать другие рефераты по теме: контрольные бесплатно, рефераты.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата