Самоаффинные фрактальные множества II. Размерности длины и поверхности
Категория реферата: Рефераты по математике
Теги реферата: дипломные работы бесплатно, оформление курсовой работы
Добавил(а) на сайт: Donat.
Предыдущая страница реферата | 1 2
Грубая триангуляция. Если пренебречь деталями с размерами, меньшими чем критическое значение xc = ус, то в этом приближении моя броуновская модель рельефа Земли имеет
вполне определенную площадь, ненамного превышающую площадь проекции рельефа на идеализированную плоскость (или сферу).
Эта ситуация резко отличается от той, которая имела место для береговой линии.
Рассмотрим в качестве примера два негауссовских ландшафта (см. [2], вклейка С 13). Они получены из одного и того же гауссовского ландшафта с помощью нелинейных преобразований, в которых предполагалось, что величина tc очень мала для долины на верхнем рисунке С 13 и для плато на нижнем рисунке С 13, и в то же время величина tc очень велика для горной цепи на верхнем рисунке С 13 и в каньоне на нижнем рисунке. Далее, я уже указывал в своих лекциях, что хорошие взлетные полосы аэропортов неровны в той же степени, что и Гималаи, только их вертикальный масштаб значительно меньше. Теперь мы видим, что эти количественные различия приводят к качественным эффектам. Прежде всего, как подсказывают обычные наблюдения и здравый смысл, у аэропорта имеется вполне определенная площадь, даже при измерении самой точной линейкой. В Гималаях же обычные фотографии, снятые издалека, показывают, что «средний наклон» порядка /4. Это в свою очередь показывает, что в области переходного масштаба имеется ряд интересных деталей; поэтому различные измерения площади, полученные с различными линейками, меньшими чем tc, должны дать кривую, график которой в двойном логарифмическом масштабе будет заведомо отличаться от прямой.
Тонкая триангуляция. В этом случае площадь наверняка может быть произвольно большой, но как быстро она будет расти с уменьшением размера треугольников? Каждый из треугольников-близнецов в ячейке имеет длину ~ b-Hk и высоту ~b-k, он очень узкий, и его площадь ~b-(H+1)k. Полное число треугольников b2k = -2/(H+1) и приближенное значение площади () ~ 1-2/(H+1). Это соотношение аналогично выражению для длины кривой L() ~ 1-1-H, но здесь аномальная размерность равна 2/(H+1), а не 1/H.
Следующая сетка, которую мы рассмотрим, самоаффинна и включает (b'b'')k прямоугольников шириной b' -k я высотой b" -k, причем b' > b". Площадь каждого из треугольников теперь ~ ((b")-1(b')1-H)k, а аномальная размерность равна log(b'b")/log(b"b'H). Она может принимать значение между 2/(H+1) и 1/H,и это есть фрактальная форма парадокса площадей Шварца.
Скачали данный реферат: Набутов, Lavr, Евмения, Severov, Гретченко, Zahar'in.
Последние просмотренные рефераты на тему: диплом 2011, книга изложение, доклад на тему, исторические рефераты.
Предыдущая страница реферата | 1 2