Случайный эксперимент, элементарные исходы, события
Категория реферата: Рефераты по математике
Теги реферата: скачать диплом, ответ 2
Добавил(а) на сайт: Боголюбов.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
ЗадачаV. Брошено 10 игральных костей. Предполагается, что все комбинации выпавших очков равновероятны. Найти вероятность того, что выпала хотя бы одна шестёрка.
Задача VI. Бросается n игральных костей. Найти вероятность того, что на всех костях выпало одно и то же количество очков.
Задача VII. Между двумя игроками проводится n партий, причем каждая партия кончается или выигрышем, или проигрышем, и всевозможные исходы партий равновероятны. Найти вероятность того, что определённый игрок выиграет ровно m партий, 0 £ m £ n.
Ответы. I. 4/19. II. ×4/19. III. 7/899.IV.3!2!2!/10! V. 1–510/610. VI. 1/6п–1. VII.
Решения. I. Общее число исходов, это число вариантов распределения оставшихся 20-ти карт между игроками В и С. Это число равно . Подсчитаем теперь число благоприятных исходов. Пусть оставшиеся три червы достались игроку В. Тогда число вариантов набора из 10-ти карт, содержащего эту тройку карт равно . Естественно, что если игрок В получил свои 10 карт, оставшиеся 10 карт неизбежно получает игрок С. Аналогичный результат получается, если предположить, что три червы оказываются у игрока С. Таким образом, ответ задачи определяется формулой , и искомая вероятность равна 4/19.
II. Принимая во внимание, что из условия нам неизвестно, какие это предложения, и нас интересует лишь количественная сторона дела, будем считать, что общее число исходов равно (полная аналогия с комбинаторной задачей об одинаковых подарках – Задача V предыдущей темы). Число благоприятных исходов. равно 5. Тогда искомая вероятность равна 1/42.
III. Общее число вариантов распределения карт среди 4-х игроков равно . Пусть первый игрок получил 4 туза. Тогда число вариантов набора доставшихся ему карт равно . Всего вариантов распределения карт между 4-мя участниками в этом случае будет равно . Нужно учесть, что четыре туза могут попасть любому из 4-х участников. Окончательно получаем, что искомая вероятность равна или 7/899»0,007786.
IV.10 букв можно расположить в ряд числом способов, равным 10! Чтобы получить число благоприятных исходов, нужно взять слово МАТЕМАТИКА и убедиться в том, что его можно получить, переставляя местами 3 буквы А, 2 буквы М и 2 буквы Т, что можно сделать 3!2!2! способами Ответ задачи: 3!2!2!/10!
V. Общее число исходов здесь равно 610. К благоприятным исходам следует отнести выпадение одной, двух, трёх и т. д. шестёрок. Проще подсчитать число неблагоприятных исходов, то есть исходов, когда не выпало ни одной шестёрки. Их, очевидно, 510, и число благоприятных исходов равно 610–510. Искомая вероятность равна 1–510/610.
VI. Общее число исходов здесь равно 6n. Число благоприятных исходов – 6. Ответ задачи: 1/6п–1.
VII Каждая партия имеет два исхода – выигрыш одного или другого участника. Для двух партий имеется 22 = 4 исходов, для трёх партий – 23=8 исходов, для n партий – 2n исходов. Среди них ровно исходов соответствуют выигрышу одного из игроков m партий. Таким образом, искомая вероятность равна
Задачи для самостоятельного решения.
1) В урне a белых и b чёрных шаров (a ³ 2; b ³ 2). Из урны без возвращения извлекаются 2 шара. Найти вероятность того, что шары одного цвета.
2) В урне находятся a белых и b черных шаров. Шары без возвращения извлекаются из урны. Найти вероятность того, что k-й вынутый шар оказался белым.
3) Колода из 32-х карт тщательно перетасована. Найти вероятность того, что все четыре туза лежат в колоде один за другим, не перемежаясь другими картами.
4) n человек рассаживаются в ряд в случайном порядке. Какова вероятность, что два определенных человека окажутся рядом?
5) Из 28 костей домино случайным образом выбираются две. Найти вероятность того, что из них можно составить “цепочку”, согласно правилам игры.
6) Из букв разрезной азбуки составлено слово СТАТИСТИКА. Затем из этих букв случайным образом без возвращения отобрано 5 букв. Найти вероятность того, что из отобранных букв можно составить слово ТАКСИ.
7) Чему равна вероятность того, что два бросания трёх разноцветных игральных костей дадут один и тот же результат?
8) В лифт 8-этажного дома на первом этаже вошли 5 человек. Каждый из них с равной вероятностью может выйти на любом из этажей, начиная со второго. Найти вероятность того, что все пятеро выйдут на разных этажах.
9) Найти вероятность того, что среди произвольно выбранных 12-ти человек все имеют дни рождения в разные месяцы.
10) В кармане лежат 10 ключей, из которых к данному замку подходит лишь один, но неизвестно, какой. Из кармана извлекаются ключи случайным образом один за другим, и делается попытка открыть замок. Найти вероятность того, что замок будет открыт с 7-й попытки.
11) Для уменьшения общего количества игр 2n команд спортсменов разбиваются на две подгруппы. Определить вероятность того, что две наиболее сильные команды окажутся: а) в разных подгруппах, б) в одной подгруппе.
12) Из группы, состоящей из 6-ти человек, трое из которых говорят по-английски, случайным образом отбирают 3-х человек. Найти вероятность того, что среди выбранных людей не менее 2-х говорят по-английски.
Ответы: 1); 2)a/(a+b); 3)29!4!/32!=1/1240; 4)2/п; 5)7/18; 6)2/21 7)1/216; 8); 9)11!/1211; 10)1/10; 11)а)n/(2n-1); б)(n-1)/(2n-1); 12)1/2
Рекомендуем скачать другие рефераты по теме: доклад на тему, биология 8 класс гдз.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата