Теория игр
Категория реферата: Рефераты по математике
Теги реферата: баллов, доклади по биологии
Добавил(а) на сайт: Stegnov.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Если же игрок 1 применит стратегию А2, то его выигрыш при стратегии В1 равен 7, при В2 – 5, а при В3 – 2. Эти числа определяют точки В¢1, В2¢, В3¢ на перпендикуляре, восстановленном в точке А2.Соединяя между собой точки В1 и В¢1, В2 и В¢2, В3 и В¢3 получим три прямые, расстояние до которых от оси 0х определяет средний выигрыш при любом сочетании соответствующих стратегий. Например, расстояние от любой точки отрезка В1В¢1 до оси 0х определяет средний выигрыш u1 при любом сочетании стратегий А1 А2 (с частотами х и 1–х) и стратегией В1 игрока 2. Это расстояние равно
2х1 + 6(1 - х2) = u1
(Вспомните планиметрию и рассмотрите трапецию А1 B1 B¢1 A2). Таким образом, ординаты точек, принадлежащих ломанной В1 M N В¢3 определяют минимальный выигрыш игрока 1 при применении им любых смешанных стратегий. Эта минимальная величина является максимальной в точке N; следовательно этой точке соответствует оптимальная стратегия Х* = (х, 1-х), а её ордината равна цене игры u. Координаты точки N находим как точку пересечения прямых В2 B¢2 и В3 B¢3.
Соответствующие два уравнения имеют вид
.
Следовательно Х = (; ), при цене игры u = . Таким образом мы можем найти оптимальную стратегию при помощи матрицы
Оптимальные стратегии для игрока 2 можно найти из системы
и, следовательно, Y = (0; ; ). (Из рисунка видно, что стратегия B1 не войдёт в оптимальную стратегию.
Пример 2. Найти решение игры, заданной матрицей
A¢4 |
x 8
A¢3 |
7
A1 |
A¢2 |
||
6 К 6
A¢1 |
Рекомендуем скачать другие рефераты по теме: рефераты бесплатно, конспект по математике.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата