Теория случайных функций
Категория реферата: Рефераты по математике
Теги реферата: контрольные бесплатно, конспект урока на тему
Добавил(а) на сайт: Krasnobaev.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Для описания состояния системы введем двумерный случайный поцесс n(t) = (x(t), d(t)) с координатами, описывающими:
- функционирование элементов
x(t) О {0, 1, 2} - число неисправных элементов;
- функционирование КПУ
d(t) О {0,1} - 1, если исправен, 0 - если нет.
Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.
Определим состояние отказа системы:
Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса d(t) (т.е. отказ какого-либо элемента и отказ КПУ).
Таким образом, можно построить граф состояний системы:
0 - состояние, при котором 0 неисправных элементов,
т.е. состояние n(t) = (0, d(t))
1 - состояние, при котором 1 неисправный элемент,
т.е. состояние n(t) = (1, 1)
П - состояние, при котором либо 2 неисправных элемента, либо 1 неисправный элемент и неисправный КПУ,
т.е. композиция состояний n(t) = (1, 1), n(t) =(2, 0) - поглощающее состояние.
Найдем интенсивности переходов.
Так как выход из строя каждого из элементов - события независимые, то получим:
вероятность выхода из строя элемента: 1-exp(-5ah) = 5ah + o(h)
вероятность восстановления элемента: 1-exp(-mh) = mh + o(h)
Ю
Рекомендуем скачать другие рефераты по теме: реферат по информатике, экология реферат.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата