Твердые тела
Категория реферата: Рефераты по математике
Теги реферата: оформление доклада, сочинение почему
Добавил(а) на сайт: Ярополов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Все деформации твёрдых тел сводятся к растяжению (сжатию) и сдвигу. При упругих деформациях форма тела восстанавливается, а при пластических не восстанавливается.
Тепловое движение вызывает колебания атомов (или ионов), из которых состоит твёрдое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями, и атомы не покидают своих мест. Поскольку атомы в твёрдом теле связаны между собой, их колебания происходят согласованно, так что по телу с определённой скоростью распространяется волна. Для описания колебаний в твёрдых телах при низких температурах часто используют представления о квазичастицах - фононах.
По своим электронным свойствам твёрдые тела разделяются на металлы, диэлектрики и полупроводники. Кроме того, при низких температурах возможно сверхпроводящее состояние, в котором сопротивление электрическому току равно нулю.
Движение микрочастиц подчиняется законам квантовой механики. У связанных электронов, например в атоме, энергия может принимать только определённые к в а н т о в а н н ы е з н а ч е н и я. В твёрдом теле эти уровни энергии объединяются в зоны, разделённые запрещёнными областями энергии (рис. 5). В силу принципа Паули электроны не скапливаются на нижнем уровне, а занимают уровни с разными энергиями. В результате может оказаться, что все уровни энергии в зоне будут полностью заполнены. Такое твёрдое тело является диэлектриком. Такое твёрдое тело является диэлектриком. Изменить энергию электрона можно только сразу на большую конечную величину (ширину запрещённой области, или, как говорят, энергетической щели). Поэтому электроны в диэлектрике не могут ускоряться в электрическом поле, и проводимость при нулевой температуре (когда нет тепловых возбуждений) равна нулю (сопротивление бесконечно).
В металле, напротив, верхний заполненный уровень энергии лежит внутри зоны, энергия электронов может меняться почти непрерывно, и электрическое поле создаёт ток. Упорядоченное движение электронов вдоль поля накладывается на интенсивное хаотическое движение. Максимальная энергия электронов определяется их концентрацией. В типичных металлах это величина порядка электрон-вольт. Соответствующая такой энергии температура » 104К! Так что даже при абсолютном нуле часть электронов в металле энергично движется и имеет огромную эффективную температуру.
Полупроводник - это тот же диэлектрик, но с малой величиной энергетической щели. Тепловое движение может “забрасывать” электроны в свободную зону (она называется зоной проводимости в отличие от заполненной валентной зоны), где они уже ускоряются электрическим полем (рис. 6). Поэтому полупроводники обычно имеют небольшую проводимость, резко зависящую от температуры. На проводимость полупроводников можно также влиять, вводя специальные примеси.
Полупроводниковые кристаллы позволяют создавать сложные полупроводниковые приборы, в том числе так называемые интегральные схемы. Сейчас достигнута такая степень интеграции, что миллионы отдельных элементов умещаются на площади размером в 1 см2! Такое устройство как бы является единым кристаллом, и новую область техники не зря называют твердотельной электроникой.
Огромное значение для современной техники имеют магнитные материалы. Атомы (или часть атомов), из которых состоит магнитное тело, могут обладать магнитным моментом. Если взаимодействие между магнитными моментами велико, то они выстраиваются определенным образом и твёрдое тело переходит в ферромагнитное или антиферромагнитное состояние.
Механические свойства твёрдых тел.
Диаграмма растяжения. Величина, характеризующая состояние деформированного тела, называется механическим напряжением. В любом сечении деформированного тела действуют силы упругости, препятствующие разрыву этого тела на части. Напряжением или, точнее, механическим напряжением называют отношение модуля силы упругости F к площади поперечного сечения S тела.
s =F/S
В СИ за единицу напряжения принимается 1 Па= 1 Н/м2, как и для давления.
В случае сжатия стержня напряжение аналогично давлению в газах и жидкостях. Для исследования деформации растяжения стержень при помощи специальных устройств подвергают растяжению, а затем измеряют удлинение образца и возникающее в нём напряжение. По результатам опытов вычерчивают график зависимости напряжения s от относительного удлинения e , получивший название диаграммы растяжения.
Закон Гука. Опыт показывает: при малых деформациях напряжение s прямо пропорцианально относительному удлинению e (участок OA диаграммы). Эта зависимость, называемая законом Гука, записывается так:
s = E |e | (1)
Относительное удлинение e в формуле (1) взято по модулю, так как закон Гука справедлив как для деформации растяжения, так и для деформации сжатия, когда e < 0.
Коэффициент пропорциональности E, входящий в закон Гука, называется модулем упругости или модулем Юнга. Модуль Юнга определяют по формуле (1), измеряя напряжение s и относительное удлинение e при малых деформациях.
Для большинства широко распространённых материалов модуль Юнга определён экспериментально. Так, для хромоникелевой стали E=2,1× 1011 Па, а для алюминия E=7× 1010 Па. Чем больше модуль Юнга, тем меньше деформируется стержень при прочих равных условиях (одинаковых F,S,l0). Модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия.
Закон Гука, записанный в формуле (1), легко привести к виду, известному из курса физики IX класса.
Действительно, подставив в формулу (1) s = F/S и e = |D l|/l0 , получим:
F/S=E × |D l|/l0
Рекомендуем скачать другие рефераты по теме: понятие курсовой работы, шпори на пятках.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата