Векторы
Категория реферата: Рефераты по математике
Теги реферата: диплом о высшем, доклад о животных
Добавил(а) на сайт: Еркулаев.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.
Обозначение: а х в = IaI * IbI * cos ( а, в).
Свойства скалярного произведения:
1. а х в = в х а.
2. Для того, чтобы два нулевых вектора а и в были перпендикулярны, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. а х в = 0.
3. Выражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.
Свойства операций над векторами.
Имеют место следующие теоремы об операциях над векторами, заданными в координатной форме.
1. Пусть даны а = (ах, аy, аz) и в = ( вx, ву, вz), тогда сумма этих векторов есть вектор с, координаты которого равны сумме одноименных координат слагаемых векторов, т.е. с = а + в = (ах + вx; аy + ву; аz + вz).
Пример 1. а = ( 3; 4; 6) и в = ( -1; 4; -3), тогда с = ( 3 + ( -1); 4 + 4; 6 + (-
3)) = ( 2; 8; 3).
2. а = (ах, аy, аz) и в = ( вx, ву, вz), тогда разность этих векторов есть вектор с , координаты которого равны разности одноименных координат данных векторов, т.е. с = а - в = (ах - вx; аy - ву; аz - вz).
Пример 2. а = ( -2; 8; -3) и в = ( -4; -5; 0), тогда с = а – в = ( -2 – ( -4 ); 8
– ( -5 ); -3 –0 ) = = ( 2; -13; -3).
3. При умножении вектора а = (ах, аy, аz) на число м все его координаты умножаются на это число, т.е. ма = ( мах, маy, маz).
Пример 3. а = ( -8; 4; 0) и м = 3, тогда 3а = ( -8 х 3; 4 х 3; 0 х 3) = ( -24; 12;
0).
Понятие вектора, которое нашло широкое распространение в прикладных науках, явилось плодотворным и в геометрии. Аппарат векторной алгебры позволил упростить изложение некоторых сложных геометрических понятий, доказательства некоторых теорем школьного курса геометрии, позволил создать особый метод решения различных геометрических задач.
Рассмотрим доказательство некоторых теорем с помощью векторов.
Теорема 1.
Диагонали ромба взаимно перпендикулярны.
Доказательство.
Пусть АВСD – данный ромб (рис.7). Введем обозначения: АВ = а, ВС = в.
Из определения ромба: АВ = DC = а, AD = ВС = в.
По определению суммы и разности векторов АС = а + в; DВ = а – в.
Рассмотрим АС * DВ = (а + в )( а – в) = а2 – в2 .
Так как стороны ромба равны, то а = в. Следовательно, AC * DB =0. Из последнего получаем АС[pic] [pic] DВ, т.е. DB АС. Ч.т.д.
Рассмотрим теперь решение задач с помощью векторов.
Задача 1.
Рекомендуем скачать другие рефераты по теме: зимой сочинение, курсовик.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата