Виды тригонометрических уравнений
Категория реферата: Рефераты по математике
Теги реферата: ответы 4 класс, реферат риски
Добавил(а) на сайт: Ogorodnikov.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Ответ: x1 = pn, nÎZ; x2 = p/4 + (-I)n · p/4 + pn, nÎZ.
4. Способ подстановки
Пример 1. 2 sin2x = 3cosx.
Решение. 2sin2x - 3cosx = 0; 2 (l - cos2x) - 3cosx = 0; 2cos2x + 3cosx - 2 = 0.
Пусть z = cosx, |z| £ 1. 2z2 + 32z - 2=0.
Д = 9+16 = 25; ÖД = 5; z1 = (-3 + 5)/4 = 1/2; z2 = (-3-5)/ 4 = -2 -
-не удовлетворяют условию для z. Тогда решим одно простейшее уравнение:
cosx = 1/2; х = ± p/3 + 2pn, nÎZ. Ответ: х = ± p/3 + 2pn, nÎZ.
5. Однородные уравнения
Однородные тригонометрические уравнения имеют такой вид:
a sin2x + b sinxcosx + c cos2x = 0 (однородное уравнение 2-й степени) или
a sin3x + b sin2x cosx + c sinx cos2x + d sin3x = 0 и т.д.
В этих уравнениях sinx ¹ 0, cosx ¹ 0. Решаются они делением обеих частей уравнения на sin2x или на cos2x и приводятся к уравнениям относительно tgx или ctgx.
Пример 1. Ö3sin2 2x - 2sin4x + Ö3cos22x = 0.
Решение. Разложим sin4x по формуле синуса двойного угла.
Получим уравнение Ö3sin22x - 4sin2xcos2x + Ö3cos22x = 0.
Разделим на cos22x. Уравнение примет вид Ö3 tg22x – 4tg2x + Ö3 = 0.
Пусть z = tg2x, тогда Ö3z2 - 4z + Ö3 = 0; Д = 4; ÖД = 2.
z1 = (4 +2)/2Ö3 = 6/2Ö3 = Ö3; z2 = (4 – 2)/2Ö3 = 1/Ö3
tg2x = Ö3 или tg2x = 1/Ö3
2x = p/3 + pn, nÎZ; 2x = p/6 + pn, nÎZ;
x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.
Ответ: x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.
Рекомендуем скачать другие рефераты по теме: реферат формирование, менеджмент.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата