Вопросы к гос. экзамену по дисциплине "Математика – Алгебра"
Категория реферата: Рефераты по математике
Теги реферата: рефераты, моря реферат
Добавил(а) на сайт: Айвазовский.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата
деления на второй и так до тех пор, пока деление завершится без остатков.
Это считается возможным, потому что остатки будут неотрицательным числом,
убывают, что бесконечным быть не может.
Оформим этот процесс математически:
а= bg1+r1, 0< r1< b,
b=r1g2+r2, 0 < r2< r1,
…………..
rk-2=rk-1gk+rk, 0< rk< rk-1
rk-1=rkgk+1 rk+1=0
и докажем теорему о нахождении НОД чисел. Заметим, что НОД чисел обозначаем так:
НОД (а;в), или просто (а,в)
Теорема 5
Последний, отличный от нуля, остаток в алгебре Евклида является НОД (а;в).
Для доказательства требуется предварительно рассмотреть две леммы:
Лемма 1: а=вg+r, то (а,в)=(в,r)
(a,b)=d® aM d1bM dÞ a-bgM dÞ rM dÞ d – общий делитель в и r,
т.е., если (в,r)=d1,то d1M d (1)
(в,r)=d1® bM d1, rM d1Þ aM d1Þ d1общий делитель a и b,Þ dM d1 (2)
Из (1) и (2) следует, что d=d1
Лемма 2: аM вÞ (а,в)=в
Теперь допишем теорему. Из последнего равенства в алгоритме Евклида следует, что
(rk-1,rk)=rk. А из предпоследнего, по лемме, следует, что (rk-2,rk-1)=(rk-1,rk)=rk
Поднимаясь от равенства к равенству в алгоритме Евклида получим (а,в)=,rk
Что и требовалось доказать.
Рекомендуем скачать другие рефераты по теме: бесплатные конспекты, реферат на тему види.
Предыдущая страница реферата | 15 16 17 18 19 20 21 22 23 24 25 | Следующая страница реферата