Вынужденные колебания
Категория реферата: Рефераты по математике
Теги реферата: тесты онлайн, шарарам ответы
Добавил(а) на сайт: Хорошилов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
(1.6)
Решение уравнения (1.6) зависит от знака коэффициента, стоящего при и. Рассмотрим случай, когда этот коэффициент положителен (т. е. b<щ0 — трение мало). Введя обозначение , придем к уравнению
Решением этого уравнения будет функция
Подставляя это выражение в уравнение (1.5), имеем
(1.7)
Здесь A0 и б — постоянные, значения которых зависят от начальных условий, щ — величина, определяемая формулой
.
Скорость затухания колебаний определяется величиной , которую называют коэффициентом затухания.
Для характеристики колебательной системы употребляется также величина
называемая добротностью колебательной системы. Она пропорциональна числу колебаний Ne , совершаемых системой за то время t, за которое амплитуда колебаний уменьшается в e раз.
Вынужденные колебания.
Допустим, что механическая колебательная система подвергается действию внешней силы, изменяющейся со временем по гармоническому закону:
(2.1)
В этом случае уравнение второго закона Ньютона имеет вид
Введя обозначения (1.3), преобразуем уравнение приобретёт вид:
(2.2)
Здесь b — коэффициент затухания, щ0 — собственная частота колебательной системы, щ — частота вынуждающей силы.
Дифференциальное уравнение (2.2) описывает вынужденные колебания. Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид
(2.3)
Рекомендуем скачать другие рефераты по теме: дипломная работа по менеджменту, реферат память.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата