Высшая математика
Категория реферата: Рефераты по математике
Теги реферата: экономический диплом, курсовая работа по экономике
Добавил(а) на сайт: Sijanovich.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
или, короче,
Действительные числа ai, bi называются коэффициентами тригонометрического ряда.
Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2p, т.к. функции sinnx и cosnx также периодические функции с периодом 2p.
Пусть тригонометрический ряд равномерно сходится на отрезке [-p; p], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).
Определим коэффициенты этого ряда.
Для решения этой задачи воспользуемся следующими равенствами:
Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.
Т.к. функция f(x) непрерывна на отрезке [-p; p], то существует интеграл
Такой результат получается в результате того, что .
Получаем:
Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от -p до p.
Отсюда получаем:
Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от -p до p.
Получаем:
Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an.
Таким образом, если функция f(x) – любая периодическая функция периода 2p, непрерывная на отрезке [-p; p] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты
существуют и называются коэффициентами Фурье для функции f(x).
Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.
Рекомендуем скачать другие рефераты по теме: ответы гиа, отчет по производственной практике.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата