Задачи линейной алгебры
Категория реферата: Рефераты по математике
Теги реферата: сжатое изложение, курсовик
Добавил(а) на сайт: Ипполита.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.3)
Для обозначения произведения матрицыі на число используется запись С = l A или С = А l. Операция составления произведения матрицы на число называется умножением матрицы на это число.
Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:
1) сочетательным свойством относительно числового множителя: ( l m ) A = l ( m A );
2) распределительным свойством относительно суммы матриц: l (A + B) = l A + l B;
3) распределительным свойством относительно суммы чисел: (l + m) A = l A + m A
Замечание. Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A — В.
Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.
Произведение матриц или перемножение матриц.
Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j = 1, 2, ..., n) имеющей порядки, соответственно равные т и n, на матрицу В = || b ij || , где (i = 1, 2, ..., n , j=1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., р), имеющая порядки, соответственно равные т и р элементы которой определя-ются по формуле:
где (i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)
Для обозначения произведения матрицыі А на матрицу В используют запись С = А × В. Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.
Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.
Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент ci j стоящий на пвресечении і-й строки и j-го столбца матрицьі С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j-го столбца матрицы В.
В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.
× =
Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матри-цу В:
1) сочетательное свойство: ( А В ) С = А ( В С );
2) распределительное относительно суммы матриц свойство:
( A + B ) С = А С + В С или A ( В + С ) = A В + А С.
Вопрос о перестановочном (переместительном) свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.
Приведем важные частные случаи матриц, для которых справедливо и переста-новочное свойство. Две матрицы для произведения которых справедливо перестановочное свойство, принято називать коммутирующими.
Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диа-гональная матрица порядка п имеет вид
D = (1.5)
где d1 , d2 , …, dn—какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d1 = d2 = … = dn то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.
Рекомендуем скачать другие рефераты по теме: сообщение, ответы 5 класс.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата