Рефераты | Рефераты по математике | Золотое сечение | страница реферата 6 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • 55

    89

    144

    233

    377

    Табл.1 Ряд Фибоначчи при u1=1

     

    Перейдем теперь от кроликов к числам и рассмотрим следующую числовую последовательность:

     u1, u2 … un

    в которой каждый член равен сумме двух предыдущих, т.е. при всяком n>2

     un=un-1+un-2.

    Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

    Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то превосходящая, то не достигающая его.

    Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Ф могут стать более понятными, если показать отношения нескольких пеpвых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

    1:1 = 1.0000, что меньше фи на 0.6180

    2:1 = 2.0000, что больше фи на 0.3820

    3:2 = 1.5000, что меньше фи на 0.1180

    5:3 = 1.6667, что больше фи на 0.0486

    8:5 = 1.6000, что меньше фи на 0.0180

    По мере продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим приближением к недостижимому Ф.

    Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте.

    Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1 : 1.618=0.618). Hо это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение – бесконечная дpобь, у этого соотношения также не должно быть конца.

    При делении каждого числа на следующее за ним через одно, получаем число 0.382

    1:0.382=2.618

    Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235 ,2.618 ,1.618,0.618,0.382,0.236.Упомянем также 0.5.Все они играют особую роль в природе и в частности в техническом анализе.


    Рекомендуем скачать другие рефераты по теме: реферати українською, скачать бесплатный реферат без регистрации.



    Предыдущая страница реферата | 1  2  3  4  5  6  7  8 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •