Эмбриональные стволовые клетки человека
Категория реферата: Рефераты по медицине
Теги реферата: шпаргалки по русскому, шпоры по экономике
Добавил(а) на сайт: Liliana.
1 2 3 | Следующая страница реферата
Эмбриональные стволовые клетки человека
Сергей Львович Киселев, проф., д.б.н., зав. лаб. молекулярной генетики рака Ин-та биологии гена РАН. Мария Андреевна Лагарькова, к.б.н., рук. группы биологии стволовых клеток в том же институте.
Пожалуй, самым молодым направлением современной медицины можно считать клеточные технологии, в которых клетки служат источником тех или иных необходимых факторов, например опухолевых антигенов при вакцинотерапии. Но использовать клетку можно не только как источник каких-либо субстанций, но и для регенеративной медицины. Здесь особый интерес вызывают технологии, основанные на стволовых клетках. Способность к неограниченному делению и к преобразованию в разные типы клеток (так называемая плюрипотентность) делает их идеальным материалом для трансплантационных методов терапии. Наиболее доступными считаются стволовые клетки взрослого организма. Однако реальный потенциал их дифференцировки еще слабо изучен.
Чрезвычайно привлекательны в этом отношении эмбриональные стволовые клетки (ЭСК) человека: из них можно получать любые типы клеток организма. Но многие свойства и клеточные механизмы, связанные с наличием у клетки так называемой «стволовости», ставят ее очень близко к трансформированной, раковой клетке. Именно поэтому так важно сегодня изучать характеристики самих эмбриональных клеток. За восемь лет, прошедших с момента получения первых линий ЭСК человека, удалось выяснить лишь небольшую часть механизмов, обеспечивающих в культуре самоподдержание недифференцированных клеток или их дифференцировку.
Еще недавно количество линий ЭСК человека, доступных для изучения, было невелико. В настоящее время их стало гораздо больше, но методологические трудности и высокая стоимость работы с ними еще ограничивают круг исследователей. Не меньшие ограничения на исследования в области эмбриональных клеток человека накладывает этическая сторона. Несмотря на дебаты об этичности или неэтичности работы с ЭСК человека, очевидно, что вопрос уже не в том, проводить ли исследования в области ЭСК человека, а в том, как будут проводиться исследования в этой области. За последние два года в большом числе стран уже были приняты законы, разрешающие исследования эмбриональных стволовых клеток человека.
Эмбриональные стволовые клетки получают из внутренней клеточной массы бластоцисты на самых ранних стадиях развития эмбриона, когда она еще не имплантировалась в стенку матки. Именно из клеток внутренней клеточной массы в дальнейшем развивается целый организм. Довольно часто, особенно в русскоязычной литературе, эмбриональными стволовыми клетками называют клетки постимплантационного эмбриона различных сроков развития беременности, которые по своим свойствам скорее схожи с взрослыми стволовыми клетками. Мы же будем говорить только об истинных эмбриональных стволовых клетках, происходящих из бластоцисты, - на той стадии, когда эмбрион состоит из 150-200 клеток трофоэктодермы и внутренней клеточной массы примерно в равном соотношении.
Стабильные линии
Стабильные клеточные линии ЭСК человека впервые получил американский исследователь Дж.Томсон в 1998 г. [1]. Этому достижению предшествовали работы М.Эванса и М.Кауфмана. В 1981 г. они впервые показали принципиальную возможность получения стабильных культур клеток млекопитающих, обладающих свойством плюрипотентности. Линии ЭСК мыши оставались в культуре in vitro в недифференцированном состоянии на протяжении более сотни удвоений, а потом in vivo могли участвовать в формировании специальных тканей животного. В 1995 г. Томсон с коллегами, модифицировав технологию выделения мышиных клеток, получил линию ЭСК приматов, а в 1998 г. - и линию клеток человека.
Для получения стабильных линий ЭСК человека берут невостребованные после искусственного оплодотворения бластоцисты человека. Обычно после такой процедуры количество бластоцист больше, чем необходимо реципиенту. Их можно заморозить, уничтожить либо с согласия доноров использовать для научных целей. Лучше всего выделять эмбриональные клетки человека на 4-6-й день после оплодотворения. Сначала с помощью фермента проназы растворяют прозрачную оболочку бластоцисты, а затем методом комплемент-зависимого лизиса удаляют трофобласты. Внутреннюю клеточную массу помещают в культуральную среду на подложку из инактивированных мышиных эмбриональных фибробластов, которые служат источником ростовых факторов. Пересаживая клетки, можно получить клеточную линию, способную к практически неограниченному делению. Сегодня в лабораториях мира выделено около 150 линий ЭСК. В нашей стране эмбриональные стволовые клетки получены в 2003 г. в Институте биологии гена РАН и в Институте цитологии РАН.
Рис. 1. Три колонии ЭСК человека.
В отличие от ЭСК мыши, человеческие клетки очень плохо растут в виде одиночных клеток,
а выживают только в колонии. Увел. 100. Здесь и далее фото авторов Эмбриональные стволовые клетки растут плотными колониями клеток на подложке из митотически инактивированных эмбриональных фибробластов мыши (рис.1). Успешность получения линий ЭСК человека довольно высока при использовании морфологически нормальных бластоцист с видимой внутренней клеточной массой, почти половина которых может дать кариотипически нормальные клетки. Эти результаты соответствуют уровню имплантации эмбрионов после пересадки реципиентам. Наращивать клеточную массу довольно сложно. Мышиные клетки прекрасно растут после ферментативной обработки до единичных клеток, но клетки человека, лишенные межклеточных контактов, обычно гибнут. Поэтому их разделяют до отдельных фрагментов по 50-500 клеток (либо ферментативной обработкой, либо механически, разрезая на кусочки микроинструментами).
Манипуляции с ооцитами in vitro позволяют получать линии ЭСК человека с заданным генотипом и, соответственно, иммунологически совместимые с потенциальным донором. Здесь возможно несколько подходов: перенос ядер соматических клеток, партеногенез или слияние клеток. Перенос ядер соматических клеток довольно часто не совсем корректно называют клонированием. В последние месяцы 2005 г. развернулась детективная история вокруг работ ученых из Сеульского национального университета под руководством В.Хванга. В 2004-2005 гг. в журнале «Science» они опубликовали две работы с описанием методики получения линии ЭСК человека из внутренней клеточной массы, полученной после пересадки ядра соматической клетки в ооцит. К сожалению, работы оказались грандиозной фальсификацией, причины которой до сих пор не выяснены. Не исключено, что все могло быть заранее организовано третьими лицами в коммерческих либо политических целях. Однако эти события не только не снизили интерес к проблеме, но и активизировали работы в этом направлении.
Основные характеристики
Как и все клеточные культуры, эмбриональные стволовые клетки нуждаются в четкой характеристике [2]. Самое простое - это внешнее описание, но оно дает весьма ограниченную информацию о свойствах клеток. В последнее время принято различать клетки по поверхностным антигенам, которые более полно описывают тот или иной тип. Эмбриональные стволовые клетки человека имеют поверхностные иммунологические маркеры, например: SSEA-3, SSEA-4 - антигенные детерминаты (эпитопы) гликолипидов и TRA-1-60, TRA-1-81 - разные эпитопы одного протеогликана клеточной поверхности.
Наличие набора определенных маркеров говорит о принадлежности клеток к ЭСК человека, но не об их способности к длительной пролиферации. Она определяется активностью фермента теломеразы и длиной теломерных повторов. У соматических клеток с ограниченным числом делений длина теломер мала, а теломеразная активность обычно очень невысока. Напротив, у опухолевых клеток активность фермента остается очень высокой, а длина теломерных повторов сохраняется. Этим же свойством обладают и эмбриональные стволовые клетки.
И иммунологические маркеры ЭСК, и высокая теломеразная активность присущи трансформированным клеткам, т.е. клеткам, в которых произошли генетические изменения. Значит, для точной характеристики линий ЭСК человека обязателен анализ кариотипа. Нормальный набор хромосом и отсутствие хромосомных аномалий - это признаки нормального кариотипа, который, однако, в процессе культивирования клеток может быть нарушен. Так, при длительном культивировании (примерно через два года) мы отметили существенное изменение в скорости роста клеток, а также в их способности к дифференцировке. Кариотипический анализ показал нарушения в хромосоме 18 и тенденцию к нестабильности кариотипа. Не исключено, что это и стало причиной аномального поведения клеток в культуре. Впоследствии мы не раз обнаруживали субклоны других линий ЭСК с различными хромосомными аберрациями. Совсем недавно появилась публикация, подтверждающая наши наблюдения. Следовательно, при длительном культивировании ЭСК человека необходим строгий контроль их кариотипа.
Молекулярно-генетические механизмы самоподдержания
Одно из замечательных свойств эмбриональных стволовых клеток - их способность сохранять плюрипотентность в культуре. На мышиных клетках это легко проверить экспериментально: из одной клетки, культивируемой in vitro, можно воссоздать целый организм. Именно так получают животных с генетическим «нокаутом». Суть технологии заключается в том, что генетически модифицированные in vitro эмбриональные клетки мыши вводят в бластоцисту, которую имплантируют псевдобеременной мышке. В результате рождаются так называемые химерные мыши, у которых часть клеток - от бластоцисты реципиента, а часть генетически модифицирована. Если такие клетки попадут в зародышевый путь, во втором поколении можно получить животное, все клетки которого будут потомками одной генетически модифицированной эмбриональной клетки.
Эта технология не только позволяет «выключать» определенные гены в строго детерминированных тканях, но «включать» дефектные, создавая модельные системы заболеваний. По понятным причинам такая процедура с клетками человека невозможна. Здесь для проверки плюрипотентности эмбриональные клетки человека вводят иммунодефицитным мышам. В результате у животных формируются доброкачественные опухоли - тератомы, в которых можно обнаружить несколько видов сформировавшихся тканей [3]. Однако для постоянного мониторинга состояния ЭСК и для обеспечения оптимальных условий культивирования такой метод представляется нерациональным. Здесь очень важно выяснить молекулярные механизмы, определяющие специфику эмбриональных стволовых клеток, а именно их способность оставаться в культуре в недифференцированном состоянии. Некоторые механизмы - общие для ЭСК мыши и человека, а некоторые - различны.
В самоподдержании ЭСК участвует транскрипционный фактор OCT4, который проявляется с восьмиклеточной стадии эмбриона мыши. Он необходим для формирования внутренней клеточной массы бластоцист (в клетках трофоэктодермы он отсутствует). Соответствующая активность гена oct4 поддерживает недифференцированное состояние эмбриональных клеток, а ее повышение или отсутствие вызывает их преобразование в клетки энтодермы и мезодермы или трофобласта соответственно [4]. В клетках соматических тканей экспрессия гена oct4, характерная для ЭСК человека, не обнаружена, хотя в последнее время появились сообщения о его низкой активности в стволовых клетках взрослого организма. Даже в начале дифференцировки ЭСК в эмбриоидные тельца активность гена оct4 снижается.
В поддержании плюрипотентности ЭСК мыши и человека участвует также гомеобоксный транскрипционный фактор NANOG. Если ген nanog заблокирован, эмбриональные клетки превращаются в примитивную энтодерму. В отсутствие ростового фактора LIF повышенная активность гена nanog обеспечивает плюрипотентное состояние ЭСК мыши. Подобно гену oct4, в клетках соматических тканей ген nanog не проявляется, за исключением фетального мозга, репродуктивных органов (семенников и яичников) и клеток эмбриональной карциномы. По мере спонтанной дифференцировки ЭСК человека в эмбриоидные тельца активность гена nanog снижается.
Кроме генетических механизмов, судьбу клетки определяют и так называемые эпигенетические механизмы (т.е. наследуемые клеткой изменения в функционировании генов, не связанные с изменением последовательности ДНК). Ярким примером их действия может служить инактивация одной из Х-хромосом в женских ХХ-клетках. Эпигенетические механизмы играют существенную роль в процессах раннего эмбрионального развития, контролируя работу генов. Эпигенетическая модификация регуляторных районов генов обеспечивает выключение их функций на последующих этапах развития. Это чрезвычайно важно, поскольку несвоевременная либо нескоординированная работа генов может приводить к гибели клеток или к их трансформации. Например, регуляторный район гена oct4 эпигенетически модифицирован практически во всех клетках взрослого организма. Такое изменение и составляет одну из основных проблем переноса ядер соматических клеток взрослого организма в ооцит. В нашей лаборатории показано, что и регуляторный район гена nanog в клетках взрослого организма эпигенетически модифицирован, что еще больше усложняет перенос ядер.
Современные методы анализа, такие как микрочипы, позволяют достаточно быстро определять активность нескольких тысяч генов, что создает более точную картину молекулярно-генетического состояния клетки. Это особенно важно для длительно культивируемых клеток, предназначенных для терапии.
Рекомендуем скачать другие рефераты по теме: реферат, философские рефераты.
1 2 3 | Следующая страница реферата