Филлотаксис и последовательность Фибоначчи
Категория реферата: Рефераты по медицине
Теги реферата: переплет диплома, жизнь человека реферат
Добавил(а) на сайт: Игнаткович.
1 2 3 4 | Следующая страница реферата
Филлотаксис и последовательность Фибоначчи
В. Березин
Реальные соцветия подсолнуха два семейства логарифмических спиралей Спирали одного семейства закручиваются к центру против хода часовой стрелки, другого — по ходу. В ботанике такое сочетание двух семейств спиралей называют филлотаксисом (в переводе с греческого слово это означает «устройство листа»).
Оказывается, числа спиралей в соцветиях подсолнечника приближенно равны двум соседним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144.
Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, и решая одну из задач Леонардо, Люка составил последовательность 0, 1, 1, 2, 3, 5, 8, ..., в которой
Fn = Fn–1 + Fn–2.
Неожиданная встреча с этой последовательностью состоится сейчас и у нас. Предположим, что α2 = 1 – α.
Выразим значения степеней α3, α4, α5... через 1 = α0 и α:
α3 = |
α·α2 = 2α – 1, |
α4 = |
2 – 3α, |
α5 = |
5α – 3, ... |
Вы узнали в коэффициентах последовательность Фибоначчи, начиная с члена F1? По-видимому, и для любого n можно записать формулу
αn = (–1)n (Fn–1 – Fnα),
где Fn–1 и Fn — члены последовательности Фибоначчи. Докажем это методом математической индукции:
αn+1 = αn·α |
= (–1)n (Fn–1α – Fnα2) = (–1)n (Fn–1α – Fn(1 – α)) = |
= (–1)n (–Fn + (Fn–1 + Fn)α) = (–1)n+1 (Fn – Fn+1α). |
У уравнения α2 = 1 – α два корня — положительный α = (√5 – 1)/2 и отрицательный α = –(√5 + 1)/2. Как мы убедились,
ì |
(–1)n α1n = Fn–1 – Fnα1, |
||||
í |
|||||
î |
(–1)n α2n = Fn–1 – Fnα2. Рекомендуем скачать другие рефераты по теме: фонды реферат, соціологія шпори. 1 2 3 4 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |