Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка
Категория реферата: Рефераты по металлургии
Теги реферата: оформление доклада титульный лист, банк курсовых работ бесплатно
Добавил(а) на сайт: Яркин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
1. полный отжиг
2. изотермический отжиг
3. нормализация
4. патентирование
1. Полный отжиг
Производится с нагревом стали до температуры, превышающей точку А3 с
последующим медленным охлаждением вместе с речью. Медленное охлаждение
вызывает полное равновесное превращение А(Ф + П. В результате получается
максимально возможная пластичность, минимальная твердость и прочность и
полное снятие внутренних напряжений. Если внутренние направления не имеют
значения то после охлаждения с печью до 5000, дальнейшее охлаждение можно
вести на воздухе. Полный отжиг применяют для устранения дефектов структуры, вызванных литьем, холодной деформацией, сваркой.
Основной недостаток полного отжига – это его большая продолжительность, возможная неравномерность зеренного строения в центре и на поверхности
крупногабаритных изделий, вызванная неодинаковой скоростью охлаждения.
2. Изотермический отжиг.
При изотермическом отжиге, заготовки, нагреваются до температуры выше т. А3
быстро охлаждают на 100є С ниже точки А1, затем помещают в печь и при этой
температуре выдерживают до полного превращения А(П.
Так как превращение А(П идет при постоянной температуре и во всем объеме
детали одновременно, такой способ отжига позволяет получить равномерную
структуру по всему объему детали. Такой вид отжига применяется для
крупногабаритных деталей ответственного назначения.
3. Нормализация.
Нормализацией называют отжиг с охлаждением детали на свободном воздухе.
Условия охлаждения при нормализации позволяют получить более мелкое зерно, по сравнению с обычным отжигом. Уменьшение размера зерна вызывает
увеличение прочности и твердости, при некотором снижении пластичности.
Особенно это заметно на деталях, содержащих 0,3-0,6%С. Прочность и
твердость таких сталей при нормализации имеет промежуточное значение между
твердостью, полученной после отжига и твердостью, полученной при закалке, поэтому нормализация таких сталей является основным видом термообработки.
Для малоуглеродистых сталей свойства после отжига и после нормализации
практически совпадают, поэтому для малоуглеродистых сталей отжиг всегда
заменяют на нормализацию. Нормализацию применяют и как окончательный вид
термообработки и как промежуточный, например, между операциями холодной
деформации для снятия наклепа или перед обработкой резанием для уменьшения
твердости.
4. Патентирование.
Это особый вид отжига, который применяется для изготовления высокопрочной
проволоки.
Низкая температура превращения позволяет получить равномерную мелкую
структуру. Такая структура называется троостит. После отжига сталь
подвергают холодной деформации, волочению. В результате мелкой структуры и
наклепа позволяют получить металл прочностью 2000-5000 Мпа.
Отжиг заэвтектоидной стали.
1. Отжиг на сфероинизацию является неполным, поэтому при нагреве полного
растворения цементитных включений не происходит. В процессе охлаждения
оставшиеся включений цементита при распаде аустенита. В результате форма
включений цементита меняется. Из бывшей пластинчатой она превращается в
округлую сферическую. Поэтому такой отжиг называется сфероинизирующим.
Изменение формы включений цементита позволяет повышать вязкость стали;
облегчает процесс обработки резанием. Такая структура стали является
идеальной перед закалкой. Для ускорения процесса сфероинизации иногда
применяют отжиг с циклированием температуры на 20-30є С выше или ниже точки
А1. Такой отжиг называют маятниковым.
При нагреве стали происходит растворение краев цементитных пластин, при
охлаждении же цементит выделяется равномерно по всей поверхности. Поэтому
при таком виде отжиге процессе сфероинизации идет быстрее.
2. Нормализация.
Применяется для заэвтектоидной стали с целью устранения выделений цементита
по границам зерен. Сплошная цементитная сетка крайне нежелательна. Она
образуется при медленном охлаждении с высоких температур. Нагрев сталей до
температур выше точки Аст приводит к растворению цементитной сетки по
границам зерен. При ускоренном охлаждении на воздухе вторичный цементит
выделяется в виде отдельных включений, не образуя сплошной сетки по
границам зерен. В результате вязкость стали восстанавливаются.
Закалка сталей.
Закалкой называют термообработку, включающую в себя нагрев сталей до
температур выше критических и быстрое, резкое охлаждение, с целью получения
высокой прочности и твердости. Различают закалки объемную и поверхностную.
При объемной закалке нагревают и охлаждают весь объем детали, при
поверхностной – только поверхность.
В зависимости от температуры нагрева закалка бывает полной и неполной. При
полной закалке сталь нагревают выше точки А3. Полная закалка применяется
для доэвтектоидной стали. В этом случае при нагреве выше точки А3 сталь
имеет полностью аустенитную структуру и после резкого охлаждения имеет
полностью мартенситную структуру. При неполной закалке полного превращения
не будет, и оставшийся в структуре феррит не даст получить высокой
твердости и прочности. Поэтому в доэвтектоидной стали неполную закалку не
применяют. Для заэвтектоидной стали применяют только неполную закалку. В
этом случае вторичный цементит, который сохраняется в стали, дополнительно
повышает твердость закаленных сталей. Если же применить полную закалку, то
вторичный цементит растворяется в аустените. Это сопровождается резким
увеличением зерна. После охлаждения в такой стали будет большое количество
остаточного аустенита. Это дополнительно уменьшит твердость стали, поэтому
для заэвтектоидной стали полная закалка никогда не применяется. Выдержка
при закалке стали должна быть такой, чтобы успели пройти все структурные и
фазовые превращения. Однако она не должна быть чрезмерной, чтобы не вызвать
роста аустенитного зерна. Обычно ориентировочно выдержку детали принимают
из расчета 1 минуту на 1 миллиметр толщины для нагрева и + 1 минута на 1
миллиметр толщины для выравнивания температуры по сечению и прохождения
всех структурах и фазовых превращений. Охлаждение при закалке должно быть
резким, для того, чтобы не допустить образования перлита, но в то же время
– максимально медленным, чтобы уменьшить уровень внутренних напряжений, образующихся в деталях при резком охлаждении. Внутренние напряжения должны
быть термические и структурные. Термические возникают из-за неодинаковой
скорости охлаждения поверхности и центров массивных деталей, а также при
неодинаковой скорости охлаждения тонких и толстых сечений детали.
Структурные напряжения возникают из-за объемного эффекта (v ^) при
переходе А> М. В зависимости от содержания углерода этот объемных эффект
достигает 5-6%. Уровень внутренних напряжений может быть настолько велик, что в результате происходит искажение формы детали или ее растрескивание.
Охлаждение при закалке может вестись в предельных средах (вода, масло
минеральное, водо-воздушные смеси). От скорости охлаждения зависит
структура, которая в стали после закалки. Если скорость недостаточная, то
получает перлитная структура. Они отличаются друг от друга различным
размером частиц перлита и цементита. Если скорость охлаждения при закалке
достаточно велика, для того, чтобы не образовался перлит, но слишком мала
для образования мартенсита в сталях, появится промежуточная структура –
бейнит. Внешне она имеет игольчатую структуру как мартенсит, но сами иглы
представляют собой феррит, внутри которого выделяется мельчайшие частицы
цемента. Если скорость охлаждается стали превышает критическую скорость, то
образуется в мартенсит, обеспечивающий максимальную твердость в закаленной
стали. Наиболее эффективное охлаждение обеспечивает вода, но её недостаток
– слишком быстрое охлаждение в интервале мартенситного превращения. В
результате возникают большие внутренние напряжения. Минеральное масло
наоборот дает малую скорость охлаждения в области мартенситного
превращения, но не достаточно быструю в области перлитного превращения.
Способы закалки.
Для того, чтобы обеспечить закалку сталей на мартенсит необходимо быстро
охлаждать её в области перлитного превращения. Но если с такой же скоростью
охлаждать её и дальше в области мартенситного превращения, то в детали
возникают резкие закалочные напряжения. Поэтому желательно проводить
охлаждение в области мартенситного превращения по возможности медленнее, но
среды с переменной скоростью охлаждения не существует и поэтому для разных
деталей применяют различные способы охлаждения, чтобы получить закаленное
состояние с минимум уровнем внутренних напряжений.
1. Охлаждение в одном охладителе (воде, масле). Недостаток - очень резкие
внутренние напряжения. Чтобы их уменьшить применяют второй способ закалки.
2. Закалка в двух средах (из воды в масло). По этому способу в начале
деталь охлаждают в воде, до температуры ниже перлитного превращения, а
затем перебрасывают до окончательного охлаждения в масло. Этот способ
сложен и требует высокой квалификации рабочих, от которых требуется
выдерживать деталь определенное количество времени в воде. Если выдержка
будет мала, то при дальнейшем охлаждении попадаем в перлитное превращение, и закалки не будет, а если выдержка слишком большая, то в деталях возникают
большие внутренние напряжения.
3. Ступенчатая закалка. При ступенчатой закалке нагретую деталь охлаждают
быстро до заданной температуре в специально горячей среде, в качестве
которой используются расплавы металлов или солей. Время выдержки в горячей
среде определяются маркой стали и может быть четко определено по
секундомеру, после этого идет окончание охлаждение в воде или масле.
Выдержка в горячей среде позволяет выровнять температуру по всему сечению
деталей, поэтому при окончательном охлаждении в воде, или масле превращение
аустенита в мартенсит идет одновременно по всему объему детали, что
позволяет резко снизить уровень внутренних напряжений. Такой способ закалки
применяют для крупногабаритных деталей сложной формы, чтобы до минимума
снизить искажение формы.
4. Изотермическая закалка. Этот способ применяется для крупногабаритных
деталей, которые нельзя охлаждать очень быстро, из-за опасности разрушения.
При изотермической закалке нагретые детали помещают в горячую среду, нагретую до заданной температурой 350-400 градусов, в которой выдерживают
до полного прохождения превращения аустенита в троостит или бейнит. После
полного превращения деталь обычно охлаждается на воздухе. Дополнительного
отпуска после такой закалке не требуется. Температура окружающей среды
выбирается термообработкой, чтобы получить в детали структуру, обеспечивающую заданную твердость.
5. Закалка с обработкой холодом. При закалке высокоуглеродистых сталей, содержащих никель, молибден, вольфрам даже после полного охлаждения до
нормальной температуры превращение аустенита в мартенсит проходит не
полностью. Остаточный аустенит имеет невысокую твердость и поэтому
твердость детали после закалки будет недостаточной. Для устранения
остаточного аустенита закаленные детали дополнительно охлаждают в области
отрицательных температур 70-80 градусов, парами углекислоты или жидкого
азота. Дополнительное охлаждение вызывает переход остаточного аустенита в
мартенсит и твердость закаленной стали повышается.
6. Закалка с самоотпуском. Этот способ закалки применятся для деталей, которые должны иметь различную твердость в различных местах. Чтобы получить
переменную твердость, нагретую деталь помещают в охлажденную среду только
рабочей поверхностью, оставляя хвостовик над поверхностью охлаждающей
среды. После полного охлаждения поверхности деталь извлекают из охлаждающей
среды и за счет тепла, сохранившегося в хвостовой части, происходит
разогрев рабочей поверхности и ее отпуск. Температуру разогрева поверхности
контролируют по цветам побежалости.
Поверхностная закалка.
Этот способ применяется для изделий, у которых должна быть поверхность и
вязкая сердцевина (шестерни, валы). При поверхностной закалке нагрев
проводится не всей детали, а только её поверхности. После нагрева сразу
проводится охлаждение. Поэтому структурные измерения затрагивают только
поверхность. В зависимости от способов нагрева различают несколько видов
поверхностей закалки:
1. Закалка погружением – разогрев поверхности ведется за счет
кратковременного погружения детали в горячую среду. После нагрева детали
охлаждают в воде или масле. Толщина закаленного слоя определяются временем
выдержки в горячей среде. Недостаток – невозможность получения тонкого
закаленного слоя.
2. Газопламенная закалка. Разогрев поверхности детали проводится за счет
нагрева пламенем газовой горелки. Достоинство способа в его
универсальности, недостаток – высокая температура пламени вызывает перегрев
поверхности и как следствие - крупное зерно, выгорание углерода, легирующих
элементов, резкий температурой градиент, возможно отслаивание закаленного
слоя.
3. Закалка ТВЧ – токами высокой частоты (индукционная закалка). Разогрев
детали производится за счет наведения в ней токов высокой частоты. Деталь
помещается внутрь индуктора, подключенного к истокам токов высокой частоты.
Достоинство способа – высокая производительность недостаток – потребность в
сложном оборудовании, для каждой детали необходим свой индуктор, наличие
вредных электромагнитных полей.
4. Закалка с нагревом поверхности лазером. При этом способе закалки
разогрев поверхности осуществляется за счет воздействия на неё
высокоэнергетического пучка излучения. Интенсивность энергии настолько
велика, что поверхность в течении нескольких долей секунд может быть
нагрета до расплавления. Охлаждение поверхности после нагрева происходит за
счет теплоотвода вглубь детали. Дополнительное охлаждение водой не
требуется. Перемещая луч лазера по поверхности можно закаливать как
отдельные участки детали, так и всю её поверхность. Этим способом можно
закаливать внутренние поверхности детали, не закаливая её наружную
поверхность. Глубина закаленного слоя регулируется временем, освещая её
лазером. При таком способе закалки она может меняться от нескольких микрон
до десятков и сотен микрон.
Отпуск стали.
Состояние закаленных деталей отличаются очень сильной неравновесностью
структуры. Это обусловлено повышенной концентрацией углерода в твердом
растворе, высокой плотностью дефектов кристаллического строения, а также
внутренними напряжениями, строениями и термическими. Из-за этого закаленная
сталь хотя и обладают высокой прочностью и твердостью, одновременно с этим
имеет практически нулевой запас вязкости. Ударные нагрузки могут вызвать
быстрое разрушение деталей. Кроме того, переход неравновесной структуры
закаленной стали в более стабильную может происходить с течением времени
самопроизвольно под воздействием окружающей температуры или внешних
нагрузок. Этот переход сопротивляется изменением объёма и поэтому такая
ситуация недопустима для высокоточных деталей или для измерительного
инструмента. Поэтому всегда закаливание детали подвергается дополнительной
термообработке – отпуску.
Различают 3 вида отпуска по температуре: низкий, средний и высокий.
Низкий отпуск 150-220 градусов
Средний отпуск 350-450 градусов
Высокий отпуск 550-650 градусов
Низкий отпуск применяется для деталей, которые должны иметь высокую
твердость и прочность. При низком отпуске мартенсит закалки превращается в
мартенсит отпуска. Мартенсит отпуска отличается от мартенсита закалки
отсутствием внутренних напряжений за счет выделения из него избытка
углеводорода в виде мельчайших карбидов. Твердость мартенсита отпуска
такая же или немного больше, чем у мартенсита закалки (58 – 62 HRC).
Средний отпуск проводится для деталей, в которых требуется максимальный
предел упругости. При температурах среднего отпуска происходит распад
остаточного аустенита в мартенсит, и затем переход мартенсита в троостит.
Троостит представляет собой игольчатую структуру феррита, вдоль игл
которого расположены выделившиеся из твердого раствора мелкие карбиды.
Такая структура обладает малым запасом вязкости, но зато высоким пределом
упругости. Поэтому такой вид отпуска применяют для изготовления упругих
деталей машин. Твердость 40 – 45НRС и очень маленькая ударная вязкость.
Высокий отпуск применяется для деталей, в которых необходимо сочетание
высокой ударной вязкости и достаточной прочности – это детали машин, работающие с ударными и знакопеременными нагрузками. При этом образуется
сорбит. Сорбит представляет собой зёрна феррита с огромным количеством
точечных и округлых выделений карбидов, равномерно распределенных по объему
стали. Твердость 20 –25 НRС.
Сочетание полной закалки и высокого отпуска называется термическим
улучшением стали. Такой термообработке обычно подвергают стали содержащие
0,3 = 0,6 %С. Поэтому такие стали часто называют улучшаемыми.
Выбор того или иного вида отпуска зависит от назначения детали. Если деталь должна обладать максимальной твердостью и износостойкостью, то соответственно твердость поверхности должна быть максимальной и для такой детали всегда применяют закалку с низким отпуском. Если же на первое место по техническим условиям выходит максимальная вязкость, то применяют закалку с высоким отпуском. Средний отпуск в большинстве случаев используют при изготовлении пружины. В некоторых случаях при быстром охлаждении деталей после горячей деформации возникает эффект увеличения твердости за счет получения неравновесных структур типа троостит или бейнит. Такая сталь с трудом поддается обработке резанием, поэтому для снижения твердости её подвергают высокому отпуску при температуре 600-700є С с медленным охлаждением. Чаще всего это высокоуглеродистая сталь или сталь, содержащая легирующие элементы.
Отпускная хрупкость.
Отпускной хрупкостью называют уменьшение вязкости стали после отпуска в
определенном интервале температур. Отпускная хрупкость разделяется на 2
вида:
1. Наблюдается после отпуска в температурном интервале 250-350є С – это
отпускная хрупкость I рода или необратимая хрупкость.
2. Наблюдается в интервале температур 500-600є С. Это отпускная хрупкость
II рода или обратимая.
Хрупкость I рода характерна для простых углеродистых сталей, содержащих от
0,3-0,6%С. Она проявляется при отпуске в температурном диапазоне 250-350є
С. Причина её появления – выделение карбидов по границам зёрен. Это
вызывает хрупкость границ и соответственно хрупкость всей детали.
Увеличение температуры отпуска вызывает распад мартенсита по всему объему
детали и соответственно выравнивание структуры, что вызывает повышение
вязкости. Таким образом, если сталь, находящуюся в состоянии отпускной
хрупкости I рода, нагреть до более высокой температуры, то её вязкость
восстановится и повторный нагрев после охлаждения в температурном интервале
250-350є С отпускной хрупкости больше не вызовет. Поэтому такая отпускная
хрупкость называется необратимой.
Хрупкость II рода характерна для среднеуглеродистой стали, содержащей
легирующие элементы: Si; Мn; Сr. Причем проявляется эта отпускная хрупкость
только при медленном охлаждении с температурой высокого отпуска. Если
детали охлаждать быстро на воздухе или в воде, то хрупкость II рода не
проявляется. Если сталь имеет уже отпускную хрупкость II рода, то для её
устранения необходимо снова нагреть деталь до температуры отпуска и быстро
охладить. Вязкость восстанавливается, но если снова нагреть и медленно
охлаждать хрупкость снова появится. Поэтому такая хрупкость называется
обратимой.
Повышает склонность сталей к отпускной хрупкости II рода наличие примесей, особенно фосфора. Поэтому чтобы сделать сталь нечувствительной к отпускной
хрупкости II рода необходимо, во-первых, снижать количество вредных
примесей, особенно фосфора, а во-вторых, добавлять в сталь молибден или
вольфрам.
Отпускная хрупкость I рода часто совпадает по температуре со средним
отпуском, поэтому пружины и рессоры характеризуются минимальным запасом
вязкости.
Прокаливаемость сталей.
Под прокаливаемостью понимают способность сталей закаливаться на
максимальную глубину.
Для ответственных деталей для обеспечения максимальной надежности требуется
максимальная, а лучше сквозная прокаливаемость. Увеличение прокаливаемости
возможно разными способами, так повышает прокаливаемость увеличение
размеров зерна аустенита, повышение температуры нагрева под закалку, уменьшение содержания вредных примесей, повышение химической однородности.
Но сильнее всего увеличивает прокаливаемость введение в сталь легирующих
элементов. Большинство из них сдвигают с-образные кривые вправо.
Увеличивая устойчивость аустенита против перлитного распада, легирующие
элементы уменьшают критическую скорость охлаждения, приближая её к скорости
охлаждения сердцевины. Сильнее всех в этом направлении действует хром, а
также Ni, Mo, Mn. В большинстве случаев при проектировании детали
конструктор должен знать величину критического диаметра для данной марки
стали. Критический диаметр – это максимально возможный диаметр для данной
марки стали, закаливающейся в данном охладителе насквозь. Самый простой
метод определения критического диаметра – способ пробной закалки. Для этого
от прутка отрезают кусок, нагревают, закаливают и измеряют твердость по
диаметру. Если твердость меняется мало, то деталь прокаливается насквозь.
Наиболее часто для определения критического диаметра применяется способ
торцевой закалки. Для этого из исследуемой стали изготовляют цилиндрический
образец с длиной цилиндра 100 мм и диаметром 25.
Образец нагревается в печи, а затем охлаждается струей воды, направленной в
торец. После полного охлаждения производится замер твердости, начиная от
торца до тех пор, пока твердость не перестанет изменяться. Границу
закаленной зоны определяют по величине закаливаемости стали. Закаливаемость
– это способность стали закаливаться на максимальную твердость.
Закаливаемость зависит прежде всего от содержания углерода. Чем больше
углерода, тем выше твердость, тем выше закаливаемость. А также от
содержания карбидообразующих легирующих элементов.
Резкое падение закаливаемости происходит тогда, когда в её структуре
становится менее 50% мартенсита.
Твердость полумартенситной зоны зависит от содержания углерода.
Таким образом, зная содержание углерода в данной стали, по специальному
экспериментальному построенному графику определяется твердость
полумартенситной зоны. После этого на экспериментально полученном графике
изменение твердости от торца получаем величину а. После этого по
специальной номограмме Блантера определяется критический диаметр для данной
марки стали. Для этого величину а откладываем на верхней масштабной
линейке, и отпускаем линию вниз до пересечения с линией соответствий
индивидуальной скорости охлаждения. От точки пересечения откладываем
горизонталь до используемой охлаждающей среды: вода, масло или воздух.
Найдя точку пересечения опускаем вниз на шкалу критических диаметров.
Химико-термическая обработка (ХТО).
ХТО – это сочетание воздействий на деталь химической среды и теплового
воздействия с целью изменения химического состава и свойств поверхности
детали.
ХТО делится на:
1. ХТО с насыщением не металлами (C, N, Si, B).
2. ХТО с насыщением металлами (Cr, Ni, Ti, Zn).
3. Многокомпонентная ХТО.
Процесс насыщения поверхности детали можно условно разбить на 3 стадии:
1) Создание активных атомов.
2) Перенос активных атомов к поверхности детали и взаимодействие их с поверхностью.
3) Диффузия активных атомов в глубь металлов.
Все эти 3 стадии процесса идут последовательно и поэтому общая скорость
ХТО определяется скоростью одной из стадий, идущей наиболее медленно.
Обычно наименьшая скорость – это скорость диффузии в металле. Для
ускорения диффузии увеличивают температуру. Чем выше температура, тем
быстрее идет диффузия, тем скорее происходит процесс насыщения поверхности
детали. Технологический процесс насыщения поверхности детали может
происходить по-разному:
1) способ насыщения из порошковых засыпок, т.е. деталь засыпают порошками, содержащими нужные элементы. Способ самоуниверсальный, наиболее доступный. Однако производительность его недостаточна и потребность в большом количестве порошка;
2) насыщение из газовой фазы. Детали помещают в специальные печи с контролируемой газовой атмосферой. Детали на конвейере проходят через печь и после выхода сразу закаливаются. Достоинства: высокая производительность, стабильное качество. Применяется при массовом изготовлении.
3) Насыщение из жидкой среды. При этом способе детали помещают в расплавы солей, щелочей, металлов, содержащих нужный элемент.
4) Насыщение из пасты. Этот способ применяется для местного насыщения детали легирующими элементами.
5) Насыщение вакуумом. Деталь помещают в вакуумную камеру, нагревают и конденсируют на нее атомы легирующих элементов. Применяется для специальных деталей или детали, которые не должны окисляться.
Структура поверхностного слоя в деталях, образующихся при ХТО, зависит от типа взаимодействия насыщающего элемента с металлом, который является основным компонентом в данной детали.
Если насыщающий элемент образует неограниченный твердый раствор, то при
ХТО наблюдается плавное изменение концентрации и структуры.
Рекомендуем скачать другие рефераты по теме: решебник по 5, диплом купить.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата