Цивилизация богов. Прогноз развития науки и техники в 21-м столетии
Категория реферата: Рефераты по науке и технике
Теги реферата: сочинение тарас, курсовики скачать бесплатно
Добавил(а) на сайт: Ливия.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
За десятилетие был наработан обширный опыт практического исправления дефектных генов непосредственно в клетках человеческого организма. Первые эксперименты часто заканчивались отторжением новых препаратов, используемых для коррекции и лечения дефектных генов. Однако позже, «нормализаторы генов», разработанные с учетом индивидуальных особенностей генома больного, а также знание механизмов реализации неблагоприятных признаков привели к тому, что лечение наследственных заболеваний стало привычным и обыденным делом в медицинской практике. Это же время ознаменовалось проведением успешных работ по нормализации дефектных генов непосредственно в половых генах человека. Подобные работы могли быть проведены значительно раньше, однако этого не случилось по той причине, что вмешательство в процесс возникновения новой жизни не одобрялось ведущими мировыми религиями, общественным мнением, и во многих странах просто находилось под законодательным запретом. И хотя техническая сторона подобного вмешательства было хорошо отработана, случаи практического применения были немногочисленны и ограничены этическими и моральными нормами. В этом случае, как и в случае с оптимизацией генома животных наука вступала на территорию, традиционно принадлежавшую Создателю, и каждый новый шаг вперед должна была делать взвешенно и осторожно.
Последние годы десятилетия были ознаменованы успехами в решении одной из самых серьезных проблем человечества – проблемы рака. Шаг за шагом ученые приближались к полной и окончательной победе над этим заболеванием. И добились желаемого результата. Большинство форм рака стали полностью излечиваться. Базовым подходом в лечении этого заболевания стало максимальное использование собственных иммунных ресурсов больного. После определения типа генного нарушения в раковой клетке производился анализ полученной индивидуальной информации, по итогам которого вырабатывались рекомендации по стратегии лечения. Последующее лечение было комплексным, выбор оптимального подхода производился врачом в содружестве с медицинским компьютером.
Одним из принципов лечения раковых заболеваний являлась нормализация работы генов вышедших из-под контроля организма. Технологии нормализации генов были хорошо отработаны при лечении наследственных заболеваний, и доказали свою эффективность на практике. Существовало сходство между механизмами генетических нарушений при заболеваниях раком и наследственными заболеваниями. Общим для них являлось нарушение структуры или целостности определенных участков ДНК. При заболеваниях раком осложняющими факторами являлись агрессивность переродившихся клеток, что проявлялось в их безудержном делении, а также передвижение больных клеток с потоками биологических жидкостей по всему организму, что делало непредсказуемым место появление метастазов. Поэтому технологии нормализации генов успешнее всего применялись на ранних стадиях заболевания, когда число больных клеток, в которых необходимо было исправить дефектные гены, составляло десятки тысяч.
В более сложных и запущенных случаях, когда применение одних «нормализаторов генов» было малоэффективным из-за огромного количества раковых клеток, использовались комплексные методы воздействия на переродившиеся клетки. Прежде всего, иммунную систему больного вынуждали работать на полную мощность специальными активирующими препаратами. Эта мера в любом случае увеличивала сопротивляемость организма и давала необходимый запас времени. Параллельно этому шел процесс выявления собственных антител организма, специфических к антигенам злокачественной клетки. Затем, основываясь на анализе обнаруженных белковых молекул, медицинские работники подбирали производителей моноклональных антител, наиболее подходящих к данному случаю. При этом использовалась картотека существующих гибридных клеток, производящих однотипные антитела к специфическим опухолевым клеткам. В сжатые сроки эти искусственные фабрики моноклональных антител осуществляли в большом количестве синтез специфических для данной опухоли антител вне организма человека.
Произведенные в больших количествах антитела использовались далее в качестве маркеров, которыми метили злокачественные клетки для последующего воздействия на них собственных иммунных ресурсов больного, а также для строительства разнообразных иммунных комплексов. Иммунные комплексы являлись сложными биологическими соединениями, выполняющими функции нахождения и уничтожения переродившихся клеток непосредственно в организме человека. Они состояли из специфических антител, ответственных за избирательное присоединение к раковым клеткам, и губительных для этих клеток химических соединений, в роли которых выступали различные токсины и яды. В процессе лечения раковые клетки обнаруживались и уничтожались по всему организму человека, а избыток иммунных комплексов в организме человека после окончания лечения предупреждал возможность рецидивов. Уничтожению подвергались все раковые клетки независимо от места их нахождения, будь они в тканях организма либо в биологических жидкостях. Использование специфических моноклональных антител позволило добиться высокой эффективности и избирательности при нахождении и присоединении к клеточным мишеням.
Сложные, комбинированные и редкие случаи раковых заболеваний требовали индивидуального подхода к лечению. Как правило, для этого методами генной инженерии создавались индивидуальные антитела, способные связываться с редкими формами злокачественных клеток. Подобные антитела зачастую могли присоединяться к нескольким типам раковых клеток, то есть являлись универсальным средством. К концу десятилетия лечение большинства форм рака стало реальностью, однако, каждый конкретный случай требовал учета индивидуальных факторов. В некоторых случаях стоимость излечения была чрезвычайно высока, однако средства, как правило, находились, поскольку любое продвижение вперед обогащало медицину новыми знаниями и давало возможность последующие проблемы решать эффективнее и быстрее.
Иммунные комплексы, способные избирательно воздействовать на клетки-мишени, стали самыми популярными лекарственными препаратами в мире. Целая индустрия, родившаяся на стыке фармакологии и генетики, исправно поставляла на мировой рынок тысячи разновидностей моноклональных антител и тысячи разновидностей наполненных лекарственными веществами капсул, в качестве которых использовались давно известные липосомы. Конструирование иммунных комплексов при лечении заболеваний происходило с учетом индивидуальных особенностей конкретного организма. В сжатые сроки были сконструированы и испытаны несколько сотен иммунных комплексов универсального назначения, которые использовались как для лечения заболеваний, так и для их профилактики, а также в косметических целях. Иммунные комплексы универсального назначения осуществляли целевую доставку лекарственных и биологически активных соединений к клеточным мишеням. Наполненные лекарственными веществами липосомы присоединялись к мембране клеток, имеющих фосфолипидное строение, после чего содержимое липосомы высвобождалось и частично попадало внутрь клетки, а частично оставалось на ее поверхности. И тот, и другой процесс были одинаково полезны для нормализации клеточной деятельности. Выбор соотношения между количеством лекарственного препарата, прошедшего через клеточную мембрану и оставшегося на поверхности клетки определялся размерами самой липосомы. Так липосомы малых размеров осуществляли доставку своего содержимого непосредственно внутрь клетки и несли в себе препараты внутриклеточного действия. Липосомы более крупных размеров доставляли содержащиеся в них вещества на поверхность клеточных мембран, воздействуя на ткани и органы, и применялись чаще всего в косметических целях. Значительную часть мирового потребления иммунных комплексов занимали профилактические цели. Те знания о функционировании клеток, которые уже были получены наукой, позволяли давать успешные рекомендации относительно потребности тех или иных клеток и тканей в определенных веществах с учетом возраста, пола, времени года и других факторов. Плановое использование иммунных комплексов позволяло удовлетворять потребности организма человека в полной мере и зачастую превентивно.
Полнее и совершеннее за последние годы стала компьютерная модель эталонного генома человека. Расшифровка нескольких тысяч индивидуальных геномов представителей различных рас, народностей, возрастов, и т.д. дала необходимый качественный материал, который способствовал изложению эталонного генома человека в виде общедоступной компьютерной модели. И хотя механизмы реализации функций многих генов оставались до сих пор еще невыясненными, все же было определено, что большинство таких генов являются ответственными за процессы метаболизма, или другими словами за реализацию внутриклеточных реакций. Такие реакции являлись одинаковыми для всех представителей вида Homo Sapiens, за редчайшими исключениями, поиск которых являлся интересным и перспективным направлением в генетике. Небольшое упрощение модели эталонного генома человека, основанное на допущении, что гены, отвечающие за процессы метаболизма в организме любого человека, являются одинаковыми для всех людей, позволило создать вполне достоверную модель эталонного генома. Эта модель имела некоторый архитектурный уклон и достоверно показывала пути реализации морфологических признаков человека, изображенных схемами «ген (группа генов) – белок – признак». Появление такой модели позволило придать генетике наглядность и зрелищность. Если добавить к этому возможность интерактивной работы с компьютерной моделью в режиме реального времени, то трудно было недооценить, насколько серьезный инструмент появился в руках ученых. Появление такого инструмента дало также очень много в плане привлечения финансовых средств и талантливых людей в генетику и смежные науки.
Миллионы интересующихся людей, не специалистов, получили доступ к интерактивной модели эталонного генома человека, вернее к ее игровой общедоступной версии. Теперь любой желающий мог удовлетворить собственное любопытство и поэкспериментировать с генами человека. На пользовательском уровне многие люди, комбинируя из набора архитектурных генов, конструировали тела, лица и организмы для своего виртуального потомства, реализуя собственные предпочтения. Произошел всплеск интереса со стороны общества к строению человеческого организма и возможностям улучшения человека за счет применения эталонных генов. На какое-то время самым популярным занятием среди взрослых и детей стали компьютерные игры с обобщенным названием «Сконструируй человека».
Специалисты же работали с компьютерной моделью эталонного генома человека скрупулезно и с воодушевлением. Они ежечасно уточняли многочисленные взаимосвязи типа «ген – белок – признак», которые были положены в основу компьютерной модели. Однако не менее важным являлось достоверное отражение в модели тех сложных взаимосвязей между генами, белками и признаками, которые существовали в скрытой, неявной форме. Поскольку подобных взаимосвязей существовало астрономическое количество, а число ученых работающих в этой области науки составляло десятки миллионов, то поступление новой полезной информации и совершенствование модели эталонного генома человека происходило безостановочно. С ростом числа отображенных взаимосвязей в компьютерной модели увеличивались потенциальное многообразие морфологических признаков и сложность модели. Совершенная модель должна была учитывать не только взаимосвязи внутри генома, но и влияние на процессы реализации наследственной информации концентраций химических соединений, температуры, освещенности, величины электрического и магнитного полей и т.п.
Примерно этим же временем датируется появление первых компьютерных моделей эталонных геномов некоторых замечательных животных, в основном насекомых и обитателей моря. Расшифровка их геномов началась достаточно давно и была направлена в основном на получение информации о специализированных функциях и признаках, которые могли быть использованы в интересах человека. Работа с существующими моделями генома некоторых замечательных животных и возможность быстрого уточнения моделей привели к накоплению качественной информации о реализации функций большинства генов и их групп. Этой информации было достаточно для создания моделей эталонных геномов исследуемых животных. За эталон в подобных моделях принималась комбинация генов, приводящая к наилучшей реализации замечательного признака либо функции. Так был исследован геном некоторых насекомых, показывающих выдающуюся стойкость в условиях радиационного облучения, на предмет понимания механизмов внутриклеточного «ремонта» и регенерации тканей. Помимо этого были расшифрованы геномы некоторых морских организмов, чувствующих себя комфортно при отрицательной температуре окружающей среды, а также в условиях повышенной температуры и высокого давления. Целью подобных исследований было определение набора метаболических реакций, позволяющих искусственному организму функционировать в экстремальных условиях, смертельных для большинства земных организмов.
Подобные исследования были крайне важны для оценки механизмов жизнеобеспечения человеческого организма, которые были запрограммированы в геноме человека и проявлялись через устойчивые метаболические реакции. В земной биосфере не существовало большого разнообразия механизмов реализации одних и тех же признаков (функций) у различных организмов, как и разнообразия комбинаций генов, кодирующих эти механизмы. Эволюция остановилась на достаточности тех или иных механизмов реализации признака для каждого организма применительно к среде его обитания, не совершенствуя эти механизмы более необходимого. Чем агрессивнее и враждебней было природное окружение какого-либо биологического вида, тем более специализированные функции ему приходилось выполнять для выживания, и тем выше предъявлялись требования к механизмам реализации необходимых признаков, тем выше находилась планка достаточности признака.
Понимание специализированных эволюционных наработок Природы позволило ученым сравнить механизмы реализации признаков (функций) у различных биологических видов и у человека, получить тем самым ценный материал для будущего улучшения человеческого генома. С точки зрения большей части земного общества, расширение возможностей человека за счет использования эволюционных наработок Природы являлось допустимым и возможным. По мере дальнейшего исследования земных организмов тщательно изучались и отбирались лучшие механизмы реализации признаков (функций), которые могли быть с успехом использованы для конструирования более совершенного организма, чем существующий человеческий организм.
Продолжалось всестороннее изучение химических свойств молекул ДНК человека. Особенно исследователей интересовало взаимодействие ДНК и биологически активных веществ (ферментов, ядов, гормонов и др.) животного и растительного происхождения. Целью, которую ставили перед собой ученые, было создание картотеки химических соединений избирательного действия, способных присоединяться к строго определенным участкам «молекулы жизни». Из практики народного врачевания различных стран мира были позаимствованы лекарственные средства, воздействующие на организм человека на внутриклеточном уровне. Из десятков тысяч биологически активных веществ подобного действия, используемых в народной медицине в течение сотен и тысяч лет, после тщательного изучения были отобраны всего несколько сотен. Отбор производился по критерию устойчивого взаимодействия биологически активного вещества и ДНК человека непосредственно в функционирующей клетке человеческого организма. Дальнейшее изучение отобранных биологически активных веществ естественного происхождения шло по пути моделирования биохимических реакций их взаимодействия с ДНК, а также по пути понимания механизмов связывания данных веществ с определенными участками «молекулы жизни».
Проводимые на протяжении двух десятков лет исследования завершились систематизацией биологически активных веществ по признаку конкретного места присоединения данного соединения к ДНК. Из большого разнообразия лекарственных средств народной медицины были вычленены вещества, способные избирательно связываться с определенными генами. Полученные знания начали использоваться для разработки средств целевой доставки лекарственных препаратов в генной терапии. Несколько позже, при помощи технологий компьютерного моделирования, из молекул отобранных веществ были выделены активные центры молекул, ответственные за избирательное взаимодействие с ДНК. Подобные активные центры были использованы при создании средств целевой доставки препаратов генной терапии к дефектным участкам генома.
Средства целевой доставки препаратов генной терапии представляли собой сложные белково-липосомные комплексы, близкие по своему строению к иммунным комплексам, широко применяемым в фармации и косметологии. Различием между средствами целевой доставки препаратов генной терапии и иммунными комплексами являлся более глубокий уровень воздействия на органическую материю. Это различие диктовало также повышенную сложность строения белково-липосомных комплексов. Присоединение такого комплекса к функционирующей клетке осуществлялось на основе взаимодействия двух белков, являющихся соответственно «ключом» и «замком». «Замком» являлся трехмерный белковый «орнамент» наружной поверхности клеточной мембраны, а «ключом» - синтезированное вне организма человека специфическое антитело к данной белковой структуре. Такой подход гарантировал доставку капсулы с препаратами генной терапии к определенной клетке. После проникновения капсулы внутрь клетки, ее содержимое высвобождалось, и в действие вступала вторая ступень комплекса, представляющая собой связку активный центр и собственно препарат генной терапии. Место присоединения активного центра к молекуле ДНК задавалось формулой активного центра, чья структура также определяла ширину дефектного участка генома, на который воздействует препарат генной терапии.
Различные комбинации активных центров и препаратов генной терапии позволили покрыть эффективным нормализующим воздействием обширные участки генома. Возможность избирательно воздействовать на конкретный единичный ген, не затрагивая при этом функций соседних генов, позволяла оказывать адресное активирующее или угнетающее воздействие на дефектные участки генома, состоящие из одного или нескольких генов. Это в свою очередь открывало перспективы нормализации и улучшения генов непосредственно в клетках функционирующего человеческого организма на протяжении всей жизни человека. По сути, зарождался новый класс лекарств, теоретически способных одновременно воздействовать на все клетки человеческого организма. На практике это означало возможность экстренного восстановления или угнетения функций генов и групп генов, требующих нормализующего воздействия, в сжатые временные сроки. Весьма близкими последствиями развития подобных технологий могли стать омоложение организма человека, увеличение активной продолжительности жизни, индивидуальное улучшение клеток, тканей и органов. Более отдаленными последствиями зарождающихся технологий виделась практика одновременного воздействия на неограниченное количество клеток, составляющих ткань либо орган человеческого организма, а также контролируемое выращивание новых органов и тканей человека непосредственно в функционирующем организме.
Необходимо заметить, что во многих лечебных учреждениях мира на протяжении последних двенадцати лет искусственно выращивались, и довольно успешно, некоторые ткани и органы человека. Существующие технологии выращивания человеческих органов и тканей вне организма были чрезвычайно сложны, в основном, потому что требовали наличия строго регламентируемой по физико-химическим параметрам питательной среды, состоящей из сотен ингредиентов. К сожалению, в данных технологиях не использовались свойственные живым организмам механизмы генетического сопровождения и контроля над развитием собственных органов и тканей, в первую очередь из-за недостаточности знаний о работе этих механизмов. Недостаток знаний потребовал разработать механизмы принудительного воздействия, дублирующие программу генетического сопровождения и контроля, имеющуюся в каждом живом организме. Программа генетического сопровождения и контроля регламентирует выполнение клетками определенных для данного месторасположения функций и этапов развития, выбранных из огромного числа возможных вариантов. Взаимная координация групп клеток на этапах развития есть необходимое условие при любых процессах роста и развития клеток, тканей, органов и организма в целом. Отсутствие взаимной координации при любых процессах роста неизбежно приведет к неуправляемому росту тканей и, как следствие, к взаимному подавлению полезных выполняемых функций с точки зрения целостного органа, организма.
Традиционно для формирования объемной структуры выращиваемых вне человеческого организма тканей и органов применялись механические ограничения, а также ограничения в питательных веществах, необходимых для роста клеток. Теперь же появились новые возможности для поэтапного регулирования процессов клеточного роста и развития. Для коррекции процессов клеточного роста начали впервые применять препараты генной терапии, содержащие химические соединения избирательного действия, одновременно активирующие либо деактивирующие гены и группы генов в большом количестве клеток. Таким образом, осуществлялось контролируемое поэтапное выполнение намеченной программы роста клеточной ткани или целостного органа. Выращивание искусственных органов вне организма человека стало хорошим полигоном, на котором шлифовались технологии поэтапного регулирования процессов роста и развития биологической материи препаратами генной терапии.
Полученные в результате совместного труда ученых и энтузиастов из многих стран знания, конечно же, беззастенчиво использовались в военных лабораториях для совершенствования генетического оружия. Разработка «генетических пуль» являлась оборотной стороной совершенствования препаратов генной терапии. Вывести из строя и сломать человеческий организм, всегда было легче, чем создать и вылечить его. Совершенное генетическое оружие открывало перспективы властвования всей планетой, и к тому же было менее затратным, чем разработка совершенных препаратов генетического регулирования для медицинских целей. По этим причинам работа над созданием генетического оружия проводилась в военных ведомствах десятков стран мира, не останавливаясь ни на минуту, с привлечением лучшего оборудования и неограниченных средств. К множеству существующих способов умерщвления человека добавились десятки новых, коварных и изощренных. Генетическое оружие, способное воздействовать на различные уровни организации биологической материи, и способное вывести из строя клетки, ткани и органы человека, а также уничтожить любые животные и растительные организмы, стало реальностью. Применение его было затруднено и даже запрещено существующими конвенциями, международными договоренностями и соглашениями, как впрочем, и применение других видов оружия массового поражения. Но риск возникновения мировой катастрофы, как следствие самого факта существования подобного оружия, вырос многократно. Свободное хождение препаратов генной терапии плюс профессиональные знания недобросовестных ученых могли породить изощренные доморощенные способы генетического унижения и уничтожения человека, которые мыслящим ученым прошлых лет не могли представиться даже в кошмарном сне. В конце десятилетия были зафиксированы первые случаи террористических актов с применением «генетических пуль» и других видов генетического оружия. Спецслужбы ведущих стран мира и мощных транснациональных компаний взяли на вооружение индивидуально разработанные «генетические яды», способные избирательно умертвить конкретного человека, превратить его в инвалида либо в сумасшедшего.
Также участились случаи хулиганского применения самодельных химических соединений, негативно влияющих на гены человеческого организма. Изначально ненаправленное на гибель людей, это было явление того же порядка, что и разработка компьютерных вирусов, синтез самодельных наркотиков и ядов, разработка доморощенных взрывных устройств и т.п., однако все чаще применение подобных химических соединений приводило к гибели людей. Доступ к современным знаниям и технологиям в совокупности с особенностями человеческой психики и в соответствии с постулатами теории вероятностей порождал страшные технологические химеры, смертельно опасные для человечества, но удовлетворяющие самодовольные амбиции непризнанных «гениев».
Для небольших специальных подразделений, выполняющих особые операции, при которых велик риск смертельного повреждения организма, а также для представителей высших эшелонов власти стала обычной практика превентивного выращивания важнейших органов и тканей на случай их повреждения в экстремальных ситуациях. Существенные затраты на эти цели могли позволить себе только экономически развитые и богатые страны или международные организации, в частности такой подход реализовывала ООН для защиты политических деятелей от террористических актов, а также солдат при обеспечении миротворческих миссий.
Широкое распространение в мире получили промышленные селективные технологии, основанные на использовании специфических белковых молекул (антител). В подобных технологиях эффективно задействовался принцип избирательности, свойственный сложным биологическим объектам, который определял избирательный иммунный ответ организма при попадании в него чужеродного вещества. Антитела, вырабатываемые организмом для связывания определенного химического соединения, теоретически могли избирательно связывать молекулы любых веществ, и делать это тем эффективнее, чем более сложное строение имели эти вещества. На практике для создания специфических антител к определенному химическому соединению, вначале разрабатывалась компьютерная модель взаимодействия этого химического соединения и моделей белковых молекул из существующего банка данных. После предварительного перебора вариантов осуществлялся отбор нескольких подходящих молекул-претендентов на роль антитела, после чего наступала стадия оптимизации химической структуры этих белковых молекул. Не стоит забывать, что все вычислительные и аналитические процессы осуществлялись на компьютерных моделях, а не на материальных объектах. Мощное компьютерное сопровождение позволяло перебирать десятки миллионов вариантов возможного строения белковой молекулы и отбирать из них наиболее оптимальные, хотя, все это и занимало достаточно много времени.
Параллельно проводились работы по созданию специфических антител к различным химическим соединениям непосредственно в функционирующем организме животного или человека. При этом задействовались естественные программы создания специфических антител, выработанные и отшлифованные эволюцией. Полученные результаты обязательно отображались в виде компьютерной модели и подвергались тщательному анализу и уточнению.
Оба указанных способа дополняли друг друга, что способствовало получению быстрых и качественных результатов. После того как структурная искомая формула белковой молекулы была определена, в дело вступали генные инженеры со своими специфическими методами. Конечной целью их работы являлось создание последовательности нуклеотидов, кодирующих синтез данного белка, или другими словами группы генов, способных продуцировать именно этот белок. Оптимизация исходной группы генов методами генной инженерии позволяла добиться желаемых результатов и в конечном итоге синтезировать именно ту молекулу белка, структура которой была определена в процессе компьютерного моделирования как самая оптимальная. В дальнейшем массовые количества специфических белковых молекул получались путем синтеза белка в клеточных культурах.
Рекомендуем скачать другие рефераты по теме: индия реферат, учебный реферат.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата