Элементы метода капиллярного электрофореза
Категория реферата: Рефераты по науке и технике
Теги реферата: книга изложение, мир докладов
Добавил(а) на сайт: Бенедиктов.
1 2 | Следующая страница реферата
Элементы метода капиллярного электрофореза
К.ф.-м.н. Ягов Г.В.
Введение
Опыт современной науки показывает, что сочетание казалось бы противоположных свойств приводит к получению новых, неожиданных результатов. Именно такое сочетание свойств воды (водных растворов электролитов) и "камня" (диоксида кремния, кварца, из которого изготовлен капилляр), позволили создать новый метод анализа, который носит название капиллярного электрофореза (КЭФ). Собственно и электрофорез и капиллярность были известны достаточно давно, но только несколько десятилетий назад удалось разработать новый метод анализа, в котором эти явления используются для разделения проб сложного состава на составляющие компоненты.
На сегодняшний день капиллярный электрофорез является одним из наиболее перспективных методов анализа, он динамично развивается и получает всё более широкое применение в различных областях аналитической химии. Простота и доступность этого метода, а также неоспоримые преимущества, которые он даёт при выполнении измерений, позволяют надеяться на динамичное развитие методического обеспечения и скорейшее включение капиллярного электрофореза в перечень физико-химических методов анализа, наиболее часто применяемых в повседневной лабораторной практике.
В предлагаемой вашему вниманию статье обобщены материалы, которые обсуждались на семинарах фирмы ЛЮМЭКС, некоторые из них были опубликованы ранее. Автор выражает надежду, что излагаемый материал будет полезен для специалистов, приступающих к самостоятельной работе с приборами капиллярного электрофореза, как в исследовательском плане, так и для выполнения рутинных измерений.
Основы метода
Теоретические основы капиллярного электрофореза достаточно сложны, что обусловлено использованием в этом методе свойств поверхности раздела двух фаз - жидкости и твердого тела, свойств вязкости жидкости и свойств ионной электропроводности жидкости, потому, не претендуя на академическую строгость изложения, постараемся продемонстрировать основные моменты метода капиллярного электрофореза.
Рис. 1. Схема процессов, происходящих на поверхности кварца а) ювенильная (свежесозданная) поверхность кварца б) образование силанольных групп на поверхности кварца в) диссоциация силанольных групп в водном электролите г) гидратация образовавшихся ионов д) связывание части катионов с поверхностью, формирование двойного электрического слоя |
Обратимся к процессам, происходящим на границе раздела двух фаз: внутренней поверхности кварцевого капилляра и водного раствора электролита, заполняющего капилляр. На свежеобразованной (ювенильной) поверхности плавленого кварца (SiO2) находятся главным образом силоксановые группы (рис. 1а). При контакте с парами воды или водными растворами силоксановые группы, обладающие двойными связями, оказываются неустойчивыми и, присоединяя молекулу воды, образуют силанольные группы (рис. 1б). При контакте поверхности кварца с водными растворами, силанольные группы диссоциируют с отщеплением ионов Н+ (рис. 1в). Степень диссоциации зависит от температуры и состава водного раствора, в частности от величины рН. При рН> 2,5 на поверхности кварца образуются диссоциированные силанольные группы, которые создают отрицательный поверхностный заряд.
Диссоциированные ионы, находящиеся как на кварцевой поверхности, так и в объёме электролита, гидратируются (рис. 1г). За счёт сил кулоновского взаимодействия, противоположно заряженные гидратированные ионы, находящиеся на поверхности и в объёме жидкости, взаимно притягиваются. Действующие при этом силы настолько велики, что ионы (часть катионов и остатки силанольных групп) частично теряют гидратирующую воду. В результате этого, первый слой катионов, непосредственно прилегающий к поверхности, теряет подвижность, связывается (рис. 1д). Поскольку "пушистые" гидратированные катионы не могут все разместиться в виде монослоя и полностью компенсировать отрицательный заряд поверхности, некоторая часть катионов, нейтрализующих отрицательный заряд, отходит в толщу раствора и образует заряд, распределённый в объеме жидкости, прилегающем к границе раздела и, в силу меньшей энергии связи с поверхностью, обладающий способностью к перемещению (рис. 2а).
Рис. 2. Формирование двойного электрического слоя (а) и ход потенциала на границе раздела кварц-электролит (б) |
Несмотря на сильное кулоновское взаимодействие рекомбинации зарядов не происходит. В результате взаимодействующие системы зарядов образуют двойной электрический слой, состоящий как бы из двух изолированных друг от друга обкладок конденсатора, имеющих заряды противоположного знака. Одну из обкладок составляют отрицательно заряженные остатки силанольных групп, другая состоит из двух частей - неподвижного слоя катионов, непосредственно примыкающих к поверхности кварца, и диффузного слоя, образованного катионами, находящимися в объеме жидкости. Распределение катионов между неподвижным и диффузным слоями, а, следовательно, и толщина двойного электрического слоя зависит в первую очередь от общей концентрации электролита в растворе. Чем она выше, тем бo льшая часть положительного заряда диффузного слоя перемещается в неподвижный слой и тем меньше становится толщина диффузного слоя (рис. 2б). При концентрации бинарного однозарядного электролита 10-3...10-4 М толщина двойного электрического слоя составляет в среднем 30...50 мкм.
Свернём (мысленно) рассматриваемую поверхность в виде трубы с внутренним диаметром 50...100 мкм, тогда окажется, что практически вся жидкость, заполняющая её, будет представлять собой диффузную часть двойного электрического слоя. Трубу столь малого диаметра принято называть капилляром. Если в такой системе вдоль оси капилляра приложить электрическое поле, то в капилляре возникнет продольное движение свободных носителей электрических зарядов (разнополярных ионов) во взаимно противоположных направлениях, а поскольку в диффузной части двойного электрического слоя присутствует избыточная концентрация катионов, то число ионов, перемещающихся к катоду будет значительно больше, при этом их движение будет увлекать за собой всю остальную массу жидкости в капилляре (вследствие молекулярного сцепления и внутреннего трения). Возникает так называемый электроосмотический поток (ЭОП), направленный к катоду, который будет осуществлять пассивный перенос раствора внутри капилляра (рис. 3).
Рис. 3. Схема процессов в кварцевом капилляре. Стрелкой показано направление электроосмотического потока. |
Вследствие этого процесса в электролите, заполняющем капилляр, возникает направленное перемещение массы жидкости, которое вызвано приложенной разностью потенциалов, при этом вся масса жидкости (за малым исключением приповерхностного слоя) перемещается с одинаковой скоростью, т.е. формируется плоский профиль скоростей. Это очень важное обстоятельство, которое позволяет получить чрезвычайно высокую разрешающую способность метода, поэтому на него надо обратить особое внимание.
Техническая реализация метода КЭФ
Минимальный состав системы, реализующей метод капиллярного электрофореза, должен иметь в своём составе следующие компоненты: кварцевый капилляр, источник высокого напряжения, устройство ввода пробы, детектор и устройство вывода информации. Дополнительные устройства позволяют автоматизировать подачу образцов, термостатировать капилляр и сделать более удобной обработку получаемой информации.
На рис. 4 представлена схема системы капиллярного электрофореза в простейшем случае. Капилляр заполняется раствором электролита, своими концами капилляр опущен в два сосуда, содержащих тот же электролит. Электролит обязательно должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой - стабилизировать состояние компонентов пробы в процессе анализа. В сосуды введены электроды, к которым прикладывается разность потенциалов. Под действием разности потенциалов в капилляре быстро устанавливается стационарное состояние: через него протекает электроосмотический поток (ЭОП), на который будет накладываться электромиграция катионов и анионов во взаимно противоположных направлениях.
Рекомендуем скачать другие рефераты по теме: реферат эволюция, сайт рефератов.
1 2 | Следующая страница реферата